en-ner-conll-2003/classificator.py

177 lines
5.6 KiB
Python
Raw Normal View History

2021-06-20 22:24:32 +02:00
import numpy as np
import pandas as pd
import torch
from torchtext.vocab import Vocab
from collections import Counter
from sklearn.metrics import f1_score
from torchcrf import CRF
from tqdm import tqdm
def load_train_data():
data = pd.read_csv("train/train.tsv.xz", sep='\t', names=['labels', 'document'])
Y_raw = data['labels'].values
X_raw = data['document'].values
return tokenize(X_raw, Y_raw)
def load_test_data():
data = pd.read_csv("test-A/in.tsv", sep='\t', names=['document'])
X = data['document'].values
return X
def load_dev_data():
data = pd.read_csv("dev-0/in.tsv", sep='\t', names=['document'])
X_raw = data['document'].values
labels_df = pd.read_csv("dev-0/expected.tsv", sep='\t', names=['labels'])
Y_raw = labels_df['labels'].values
return tokenize(X_raw, Y_raw)
def build_vocab(dataset):
counter = Counter()
for document in dataset:
counter.update(document)
return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])
def build_vocab_BIO(dataset):
counter = Counter()
for document in dataset:
counter.update(document)
return Vocab(counter, specials=[])
def tokenize(X_raw, Y_raw):
X = [x.split(sep=" ") for x in X_raw]
Y = [y.split(sep=" ") for y in Y_raw]
return X, Y
def data_process(dt, vocab):
return [torch.tensor([vocab[token] for token in document], dtype=torch.long) for document in dt]
def data_translate(dt, vocab):
return [[vocab.itos[token] for token in document] for document in dt]
class GRU(torch.nn.Module):
def __init__(self, doc_vocab_len, tags_number):
super(GRU, self).__init__()
self.emb = torch.nn.Embedding(doc_vocab_len, 100)
self.dropout = torch.nn.Dropout(0.2)
self.rec = torch.nn.GRU(100, 256, 2, batch_first=True, bidirectional=True)
self.fc1 = torch.nn.Linear(2*256, tags_number)
def forward(self, x):
emb = torch.relu(self.emb(x))
emb = self.dropout(emb)
gru_output, h_n = self.rec(emb)
out_weights = self.fc1(gru_output)
return out_weights
def train_model(bio, crf, device, X, Y, epoch_amount):
for epoch in range(epoch_amount):
print("\nepoch: ", epoch + 1, "/", epoch_amount)
bio.train()
crf.train()
for i in tqdm(range(len(Y))):
batch_tokens = X[i].unsqueeze(0).to(device)
batch_tags = Y[i].unsqueeze(1).to(device)
emissions = bio(batch_tokens).squeeze(0).unsqueeze(1).to(device)
optimizer.zero_grad()
loss = -crf(emissions, batch_tags)
loss.backward()
optimizer.step()
def test_model(dataset_tokens, bio, crf, device, BIO_vocab, save_path):
bio.eval()
crf.eval()
Y_pred = []
for i in tqdm(range(len(dataset_tokens))):
batch_tokens = dataset_tokens[i].unsqueeze(0).to(device)
emissions = bio(batch_tokens).squeeze(0).unsqueeze(1).to(device)
Y_pred += [crf.decode(emissions)[0]]
#np.savetxt(save_path, Y_pred, delimiter="\t")
Y_pred_translated = data_translate(Y_pred, BIO_vocab)
with open(save_path, "w+") as file:
temp_str = ""
for i in Y_pred_translated:
for j in i:
temp_str += str(j)
temp_str += " "
temp_str = temp_str[:-1]
temp_str += "\n"
temp_str = temp_str[:-1]
file.write(temp_str)
def eval_model(dataset_tokens, dataset_labels, bio, crf, device, BIO_vocab, save_path):
Y_true = []
Y_pred = []
bio.eval()
crf.eval()
for i in tqdm(range(len(dataset_labels))):
batch_tokens = dataset_tokens[i].unsqueeze(0).to(device)
batch_tags = dataset_labels[i].unsqueeze(1).to(device)
emissions = bio(batch_tokens).squeeze(0).unsqueeze(1).to(device)
Y_pred += [crf.decode(emissions)[0]]
Y_true += [batch_tags]
Y_pred_translated = data_translate(Y_pred, BIO_vocab)
#np.savetxt(save_path, Y_pred_translated, delimiter="\t")
with open(save_path, "w+") as file:
temp_str = ""
for i in Y_pred_translated:
for j in i:
temp_str += str(j)
temp_str += " "
temp_str = temp_str[:-1]
temp_str += "\n"
temp_str = temp_str[:-1]
file.write(temp_str)
return Y_pred_translated
if __name__ == "__main__":
BIO_LABELS = ['I-MISC', 'I-LOC', 'I-ORG', 'I-PER', 'B-MISC', 'B-LOC', 'B-ORG', 'B-PER', 'O']
BATCH = 1
EPOCHES = 5
BIO_TAGS_AMOUNT = 9
# set device
use_cuda = torch.cuda.is_available()
print("use CUDA: ", use_cuda)
device = torch.device("cuda" if use_cuda else "cpu")
# loading and prepearing data
print("Loading data...")
X, Y = load_train_data()
vocab = build_vocab(X)
vocab_BIO = build_vocab_BIO(Y)
data_tokens = data_process(X, vocab)
labels_tokens = data_process(Y, vocab_BIO)
# train model
print("Training model...")
bio_model = GRU(len(vocab.itos), BIO_TAGS_AMOUNT).to(device)
crf = CRF(BIO_TAGS_AMOUNT).to(device)
params = list(bio_model.parameters()) + list(crf.parameters())
optimizer = torch.optim.Adam(params)
train_model(bio_model, crf, device, data_tokens, labels_tokens, EPOCHES)
# test model
print("Evaluate model...")
X_dev, Y_dev_exp = load_dev_data()
data_tokens_dev = data_process(X_dev, vocab)
labels_tokens_dev = data_process(Y_dev_exp, vocab_BIO)
Y_pred = eval_model(data_tokens_dev, labels_tokens_dev, bio_model, crf, device, vocab_BIO, "dev-0/out.tsv")
X_test = load_test_data()
data_tokens_test = data_process(X_test, vocab)
test_model(data_tokens_test, bio_model, crf, device, vocab_BIO, "test-A/out.tsv")