111 lines
3.0 KiB
Python
111 lines
3.0 KiB
Python
|
#!/usr/bin/env python3
|
||
|
# -*- coding: utf-8 -*-
|
||
|
"""
|
||
|
Created on Tue Sep 28 11:11:06 2021
|
||
|
@author: sadrachpierre
|
||
|
"""
|
||
|
import pandas as pd
|
||
|
import pandas_datareader as web
|
||
|
import datetime
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
import seaborn as sns
|
||
|
|
||
|
from statsmodels.tsa.statespace.sarimax import SARIMAX
|
||
|
from statsmodels.tsa.arima.model import ARIMA
|
||
|
pd.set_option('display.max_columns', None)
|
||
|
pd.set_option('display.max_rows', None)
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
# btc = web.get_data_yahoo(['BTC-USD'], start=datetime.datetime(2018, 1, 1), end=datetime.datetime(2020, 12, 2))
|
||
|
|
||
|
# btc = btc['Close']
|
||
|
|
||
|
# btc.to_csv("btc.csv")
|
||
|
|
||
|
btc = pd.read_csv("btc.csv")
|
||
|
|
||
|
|
||
|
btc.index = pd.to_datetime(btc['Date'], format='%Y-%m-%d')
|
||
|
del btc['Date']
|
||
|
|
||
|
print(btc.head())
|
||
|
sns.set()
|
||
|
plt.ylabel('BTC Price')
|
||
|
plt.xlabel('Date')
|
||
|
plt.xticks(rotation=45)
|
||
|
plt.plot(btc.index, btc['BTC-USD'], )
|
||
|
plt.show()
|
||
|
|
||
|
train = btc[btc.index < pd.to_datetime("2020-11-01", format='%Y-%m-%d')]
|
||
|
test = btc[btc.index >= pd.to_datetime("2020-11-01", format='%Y-%m-%d')]
|
||
|
print(test)
|
||
|
plt.plot(train, color = "black", label = 'Training')
|
||
|
plt.plot(test, color = "red", label = 'Testing')
|
||
|
plt.ylabel('BTC Price')
|
||
|
plt.xlabel('Date')
|
||
|
plt.xticks(rotation=45)
|
||
|
plt.title("Train/Test split for BTC Data")
|
||
|
|
||
|
y = train['BTC-USD']
|
||
|
|
||
|
ARMAmodel = SARIMAX(y, order = (1, 0, 1))
|
||
|
ARMAmodel = ARMAmodel.fit()
|
||
|
|
||
|
y_pred = ARMAmodel.get_forecast(len(test.index))
|
||
|
y_pred_df = y_pred.conf_int(alpha = 0.05)
|
||
|
y_pred_df["Predictions"] = ARMAmodel.predict(start = y_pred_df.index[0], end = y_pred_df.index[-1])
|
||
|
y_pred_df.index = test.index
|
||
|
y_pred_out = y_pred_df["Predictions"]
|
||
|
plt.plot(y_pred_out, color='green', label = 'ARMA Predictions')
|
||
|
plt.legend()
|
||
|
|
||
|
|
||
|
import numpy as np
|
||
|
from sklearn.metrics import mean_squared_error
|
||
|
|
||
|
arma_rmse = np.sqrt(mean_squared_error(test["BTC-USD"].values, y_pred_df["Predictions"]))
|
||
|
print("ARMA RMSE: ",arma_rmse)
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
ARIMAmodel = ARIMA(y, order = (5, 4, 2))
|
||
|
ARIMAmodel = ARIMAmodel.fit()
|
||
|
|
||
|
y_pred = ARIMAmodel.get_forecast(len(test.index))
|
||
|
y_pred_df = y_pred.conf_int(alpha = 0.05)
|
||
|
y_pred_df["Predictions"] = ARIMAmodel.predict(start = y_pred_df.index[0], end = y_pred_df.index[-1])
|
||
|
y_pred_df.index = test.index
|
||
|
y_pred_out = y_pred_df["Predictions"]
|
||
|
plt.plot(y_pred_out, color='Yellow', label = 'ARIMA Predictions')
|
||
|
plt.legend()
|
||
|
|
||
|
|
||
|
import numpy as np
|
||
|
from sklearn.metrics import mean_squared_error
|
||
|
|
||
|
arma_rmse = np.sqrt(mean_squared_error(test["BTC-USD"].values, y_pred_df["Predictions"]))
|
||
|
print("ARIMA RMSE: ",arma_rmse)
|
||
|
|
||
|
|
||
|
|
||
|
SARIMAXmodel = SARIMAX(y, order = (5, 4, 2), seasonal_order=(2,2,2,12))
|
||
|
SARIMAXmodel = SARIMAXmodel.fit()
|
||
|
|
||
|
y_pred = SARIMAXmodel.get_forecast(len(test.index))
|
||
|
y_pred_df = y_pred.conf_int(alpha = 0.05)
|
||
|
y_pred_df["Predictions"] = SARIMAXmodel.predict(start = y_pred_df.index[0], end = y_pred_df.index[-1])
|
||
|
y_pred_df.index = test.index
|
||
|
y_pred_out = y_pred_df["Predictions"]
|
||
|
plt.plot(y_pred_out, color='Blue', label = 'SARIMA Predictions')
|
||
|
plt.legend()
|
||
|
|
||
|
|
||
|
import numpy as np
|
||
|
from sklearn.metrics import mean_squared_error
|
||
|
|
||
|
arma_rmse = np.sqrt(mean_squared_error(test["BTC-USD"].values, y_pred_df["Predictions"]))
|
||
|
print("SARIMA RMSE: ",arma_rmse)
|