import torch import torch.nn as nn import torch.optim as optim import torchvision from torchvision import datasets, models, transforms import multiprocessing def main(): # Set the device to use (GPU if available, otherwise CPU) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Define data transformations data_transforms = { "train": transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), "validation": transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) } # Set the path to your vegetable images folder data_dir = "neural_network/dataset/vegetables" # Load the dataset from the folder image_datasets = {x: datasets.ImageFolder(f"{data_dir}/{x}", data_transforms[x]) for x in ["train", "validation"]} dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=multiprocessing.cpu_count()) for x in ["train", "validation"]} dataset_sizes = {x: len(image_datasets[x]) for x in ["train", "validation"]} class_names = image_datasets["train"].classes print(class_names) num_classes = len(class_names) print(num_classes) # Load a pre-trained ResNet model model = models.resnet18(pretrained=True) num_ftrs = model.fc.in_features model.fc = nn.Linear(num_ftrs, num_classes) model = model.to(device) # Define the loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9) # Load the previously trained model state #checkpoint = torch.load("neural_network/save/trained_model.pth") #model.load_state_dict(checkpoint) # Train the model def train_model(model, criterion, optimizer, num_epochs=2): best_model_wts = None # Initialize the variable best_acc = 0.0 for epoch in range(num_epochs): print(f"Epoch {epoch+1}/{num_epochs}") print("-" * 10) for phase in ["train", "validation"]: if phase == "train": model.train() else: model.eval() running_loss = 0.0 running_corrects = 0 for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() with torch.set_grad_enabled(phase == "train"): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) if phase == "train": loss.backward() optimizer.step() running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects.double() / dataset_sizes[phase] print(f"{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}") if phase == "validation" and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = model.state_dict() torch.save(best_model_wts, "neural_network/save/trained_model.pth") # Start training train_model(model, criterion, optimizer, num_epochs=2) if __name__ == '__main__': multiprocessing.set_start_method('spawn') # Set start method for multiprocessing main()