class Node: def __init__(self, state, parent='', action=''): self.state = state self.parent = parent self.action = action class Search: def __init__(self, cell_size): self.cell_size = cell_size # WARNING! IT EXCEEDS THE PLANE!!! def succ(self, state): # successor function x = state[0] y = state[1] angle = state[2] if angle == 0: return [['move', x, y - self.cell_size, 0], ['left', x, y, 270], ['right', x, y, 90]] if angle == 90: return [['move', x + self.cell_size, y, 90], ['left', x, y, 0], ['right', x, y, 180]] if angle == 180: return [['move', x, y + self.cell_size, 180], ['left', x, y, 90], ['right', x, y, 270]] if angle == 270: return [['move', x - self.cell_size, y, 270], ['left', x, y, 180], ['right', x, y, 0]] def graphsearch(self, istate, goaltest): x = istate[0] y = istate[1] angle = istate[2] fringe = [Node([x, y, angle])] # queue (moves/states to check) fringe_state = [fringe[0].state] explored = [] while True: if len(fringe) == 0: return False elem = fringe.pop(0) fringe_state.pop(0) # if goal_test(elem.state): # return # print(elem.state[0], elem.state[1], elem.state[2]) if elem.state[0] == goaltest[0] and elem.state[1] == goaltest[1]: # checks if we reached the given point steps = [] while elem.parent != '': steps.append([elem.action, elem.state[0], elem.state[1]]) # should return only elem.action in prod elem = elem.parent steps.reverse() print(steps) # only for dev return steps explored.append(elem.state) for (action, state_x, state_y, state_angle) in self.succ(elem.state): if state_x < 0 or state_y < 0: # check if any of the values are negative continue if [state_x, state_y, state_angle] not in fringe_state and \ [state_x, state_y, state_angle] not in explored: x = Node([state_x, state_y, state_angle]) x.parent = elem x.action = action fringe.append(x) fringe_state.append(x.state) se = Search(50) se.graphsearch(istate=[50, 50, 0], goaltest=[150, 250])