import numpy as np import random import math def create_initial_population(num_cities, population_size, list): population = [] for _ in range(population_size): chromosome = list.copy() chromosome.remove((1, 1)) # Usuń punkt (1, 1) z listy random.shuffle(chromosome) chromosome.insert(0, (1, 1)) # Dodaj punkt (1, 1) na początku trasy population.append(chromosome) return population def calculate_distance(city1, city2): x1, y1 = city1 x2, y2 = city2 distance = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) return distance def calculate_fitness(individual): total_distance = 0 num_cities = len(individual) for i in range(num_cities - 1): city1 = individual[i] city2 = individual[i + 1] distance = calculate_distance(city1, city2) total_distance += distance fitness = 1 / total_distance return fitness def crossover(parent1, parent2): child = [(1, 1)] + [None] * (len(parent1) - 1) # Inicjalizacja dziecka z punktem (1, 1) na początku start_index = random.randint(1, len(parent1) - 1) end_index = random.randint(start_index + 1, len(parent1)) # Skopiuj fragment miast od parent1 do dziecka child[start_index:end_index] = parent1[start_index:end_index] # Uzupełnij brakujące miasta z parent2 remaining_cities = [city for city in parent2 if city not in child] child[1:start_index] = remaining_cities[:start_index - 1] child[end_index:] = remaining_cities[start_index - 1:] return child def mutate(individual, mutation_rate): for i in range(1, len(individual)): # Rozpoczynamy od indeksu 1, aby pominąć punkt (1, 1) if random.random() < mutation_rate: j = random.randint(1, len(individual) - 1) # Wybieramy indeks od 1 do ostatniego indeksu individual[i], individual[j] = individual[j], individual[i] return individual def genetic_algorithm(list): chromosome_length = 21 max_generations = 200 population_size = 200 crossover_rate = 0.25 mutation_rate = 0.1 num_cities = chromosome_length population = create_initial_population(num_cities, population_size, list) best_individual = None best_fitness = float('-inf') for generation in range(max_generations): # # Oblicz wartości fitness dla każdego osobnika w populacji # fitness_values = [calculate_fitness(individual) for individual in population] # population = [x for _, x in sorted(zip(fitness_values, population), reverse=True)] # fitness_values.sort(reverse=True) # max_fitness_index = np.argmax(fitness_values) # # Wybierz najlepszego osobnika z ostatniej populacji # if fitness_values[max_fitness_index] > best_fitness: # best_fitness = fitness_values[max_fitness_index] # best_individual = population[max_fitness_index] # # Twórz nową populację z krzyżówek # new_population = [] # for _ in range(int(population_size / 2)): # parent1, parent2 = random.choices(population[:population_size // 2], k=2) # child1 = crossover(parent1, parent2) # child2 = crossover(parent2, parent1) # new_population.extend([child1, child2]) # # Dokonaj mutacji na nowej populacji # new_population = [mutate(individual, mutation_rate) for individual in new_population] # population = new_population # Oblicz wartości fitness dla każdego osobnika w populacji fitness_values = [calculate_fitness(individual) for individual in population] population = [x for _, x in sorted(zip(fitness_values, population), reverse=True)] fitness_values.sort(reverse=True) best_individuals = population[:10] # Wybierz k najlepszych osobników new_population = best_individuals.copy() # Twórz nową populację z krzyżówek i mutacji while len(new_population) < population_size: parent1, parent2 = random.choices(best_individuals, k=2) # Wybierz rodziców spośród najlepszych osobników child = crossover(parent1, parent2) # Krzyżowanie child = mutate(child, mutation_rate) # Mutacja new_population.append(child) for individual in best_individuals: fitness = calculate_fitness(individual) if fitness > best_fitness: best_fitness = fitness best_individual = individual population = new_population[:population_size] print("Best path:", best_individual) return best_individual