a * wypisuje droge
This commit is contained in:
parent
0e183ca1cf
commit
635d448799
16
bfs.py
16
bfs.py
@ -10,10 +10,11 @@ class Bfs:
|
||||
self.close_queue = []
|
||||
self.wall_cells = []
|
||||
self.enemy_cells = []
|
||||
|
||||
def heuristic(a,b):
|
||||
return abs(a[0]-b[0])+abs(a[1]-b[1])
|
||||
def bfs(self):
|
||||
print("x: ", self.game.agent.x, "y: ", self.game.agent.y)
|
||||
|
||||
cost_road=0
|
||||
self.open_queue.append(self.get_cell_number(self.game.agent.x,self.game.agent.y))
|
||||
# tutaj dodaje się cel agenta
|
||||
goal_cell = self.get_cell_number(self.game.flower.x,self.game.flower.y)
|
||||
@ -33,25 +34,25 @@ class Bfs:
|
||||
continue
|
||||
|
||||
print("Aktualna kratka: ", current_node_cell)
|
||||
print("Cel znajduje się na kratce: ", goal_cell)
|
||||
print("Cel znajduje sie na kratce: ", goal_cell)
|
||||
|
||||
if (current_node_cell == goal_cell):
|
||||
self.close_queue.append(current_node_cell)
|
||||
found_goal_cell = current_node_cell
|
||||
print("Znaleziono cel, szukanie drogi z odwiedzonych węzłów, kolejka odwiedzonych:", self.close_queue)
|
||||
print("Znaleziono cel, szukanie drogi z odwiedzonych wezlow, kolejka odwiedzonych:", self.close_queue)
|
||||
processing = False
|
||||
find_path = True
|
||||
self.game.clock.tick(2)
|
||||
else:
|
||||
child_node_cells = self.get_child_nodes(current_node_cell)
|
||||
self.close_queue.append(current_node_cell)
|
||||
print("Sąsiedzi: ", child_node_cells)
|
||||
print("Sasiedzi: ", child_node_cells)
|
||||
for child_node in child_node_cells:
|
||||
if child_node not in self.open_queue and child_node not in self.close_queue:
|
||||
self.open_queue.append(child_node)
|
||||
print("Kolejka: ", self.open_queue, "\n")
|
||||
else:
|
||||
print("Brak nowych węzłów, kolejka: ",self. open_queue)
|
||||
print("Brak nowych wezlow, kolejka: ",self. open_queue)
|
||||
print("Odwiedzone : ", self.close_queue)
|
||||
return self.close_queue
|
||||
|
||||
@ -152,6 +153,7 @@ class Bfs:
|
||||
return False
|
||||
|
||||
def move_agent(self,path):
|
||||
print("PATH:::::",path)
|
||||
for cell_to_move in path:
|
||||
x, y = self.get_coordinates(cell_to_move)
|
||||
print("Ruch do kratki : ", cell_to_move, " z x: ", x, ", y: ", y, ", agent.x: ", self.game.agent.rect.x, ", agent.y: ", self.game.agent.rect.y)
|
||||
@ -181,7 +183,7 @@ class Bfs:
|
||||
self.game.update()
|
||||
self.game.map()
|
||||
|
||||
print("Położenie agenta: agent.x: ", self.game.agent.rect.x, ", agent.y: ", self.game.agent.rect.y)
|
||||
print("Polozenie agenta: agent.x: ", self.game.agent.rect.x, ", agent.y: ", self.game.agent.rect.y)
|
||||
self.game.clock.tick(2)
|
||||
|
||||
def get_coordinates(self,cell_to_move): #zamienia numer kratki na koordynaty
|
||||
|
114
main.py
114
main.py
@ -6,6 +6,7 @@ from mobs import *
|
||||
#from unknown_mob import * #unknown mob
|
||||
import random
|
||||
from bfs import *
|
||||
from heapq import *
|
||||
|
||||
class Game:
|
||||
|
||||
@ -50,16 +51,27 @@ class Game:
|
||||
self.bfs.enemy_cells.append(self.bfs.get_cell_number(self.sauron.x,self.sauron.y))
|
||||
self.flower = Health_flower(self, 8,2)
|
||||
#self.unknown_mob = Unknown_mob(self,8,8) #unknown mob
|
||||
self.grass = Grass(self,0,2)
|
||||
self.grass = Grass(self,1,2)
|
||||
self.grass = Grass(self,0,3)
|
||||
self.grass = Grass(self,1,3)
|
||||
self.grass = Grass(self,0,4)
|
||||
self.grass = Grass(self,1,4)
|
||||
cost_cell_1000=[13,26,27,40]
|
||||
for y in range(5):
|
||||
self.rock = Rocks(self,3,y)
|
||||
self.bfs.wall_cells.append(self.bfs.get_cell_number(self.rock.x,self.rock.y))
|
||||
'''
|
||||
for i in range(10):
|
||||
x = random.randint(0,12)
|
||||
y = random.randint(0,11)
|
||||
self.grass = Grass(self,x,y)
|
||||
self.grass_cells.append(self.bfs.get_cell_number(self.grass.x,self.grass.y))
|
||||
|
||||
for y in range(5,8):
|
||||
self.little_rocks = Little_Rocks(self,4,y)
|
||||
'''
|
||||
|
||||
|
||||
|
||||
|
||||
@ -113,6 +125,108 @@ class Game:
|
||||
|
||||
|
||||
# BFS ALGORITHM
|
||||
cols, rows = 13,12
|
||||
def get_circle(x,y):
|
||||
return (x * TILE_SIZE + TILE_SIZE//2, y* TILE_SIZE + TILE_SIZE//2), TILE_SIZE//4
|
||||
def get_rect(x,y):
|
||||
return x*TILE_SIZE +1, y* TILE_SIZE +1, TILE_SIZE -2, TILE_SIZE -2
|
||||
'''
|
||||
def get_next_nodes(x,y):
|
||||
check_next_node = lambda x, y:True if 0<= x < cols and 0<=y < rows else False
|
||||
ways =[-1,0],[0,-1],[1,0],[0,1]
|
||||
return [(grid[y + dy][x + dx], (x + dx, y + dy)) for dx, dy in ways if check_next_node(x + dx, y + dy)]
|
||||
'''
|
||||
def get_neighbours(x, y):
|
||||
check_neighbour = lambda x, y: True if 0 <= x < cols and 0 <= y < rows else False
|
||||
ways = [-1, 0], [0, -1], [1, 0], [0, 1]
|
||||
return [(grid[y + dy][x + dx], (x + dx, y + dy)) for dx, dy in ways if check_neighbour(x + dx, y + dy)]
|
||||
def heuristic(a, b):
|
||||
return abs(a[0] - b[0]) + abs(a[1] - b[1])
|
||||
def dijkstra(start, goal, graph):
|
||||
queue = []
|
||||
heappush(queue, (0, start))
|
||||
cost_visited = {start: 0}
|
||||
visited = {start: None}
|
||||
|
||||
while queue:
|
||||
cur_cost, cur_node = heappop(queue)
|
||||
if cur_node == goal:
|
||||
break
|
||||
|
||||
neighbours = graph[cur_node]
|
||||
for neighbour in neighbours:
|
||||
neigh_cost, neigh_node = neighbour
|
||||
new_cost = cost_visited[cur_node] + neigh_cost
|
||||
|
||||
if neigh_node not in cost_visited or new_cost < cost_visited[neigh_node]:
|
||||
priority = new_cost + heuristic(neigh_node, goal)
|
||||
heappush(queue, (priority, neigh_node))
|
||||
cost_visited[neigh_node] = new_cost
|
||||
visited[neigh_node] = cur_node
|
||||
return visited
|
||||
grid =['2229222222222',
|
||||
'2229222222222',
|
||||
'9929222222222',
|
||||
'9929222222222',
|
||||
'9929222222222',
|
||||
'2222222222222',
|
||||
'2222222222222',
|
||||
'2222222222222',
|
||||
'2222222222222',
|
||||
'2222222222222',
|
||||
'2222222222222',
|
||||
'2222222222222'
|
||||
]
|
||||
grid = [[int(char) for char in string ] for string in grid]
|
||||
|
||||
|
||||
graph ={}
|
||||
for y, row in enumerate(grid):
|
||||
for x, col in enumerate(row):
|
||||
graph[(x, y)] = graph.get((x, y), []) + get_neighbours(x, y)
|
||||
print("graph 2 0",graph[(2,0)])
|
||||
|
||||
start = (1,1)
|
||||
goal =(0,5)
|
||||
queue =[]
|
||||
heappush(queue, (0,start))
|
||||
cost_visited = {start:0}
|
||||
visited = {start: None}
|
||||
goall=1
|
||||
while goall==1:
|
||||
if queue:
|
||||
visited=dijkstra(start,goal,graph)
|
||||
goall=0
|
||||
|
||||
path=[]
|
||||
path_head, path_segment = goal, goal
|
||||
while path_segment:
|
||||
print("path_segment: ",path_segment)
|
||||
|
||||
path_segment =visited[path_segment]
|
||||
path.append(path_segment)
|
||||
print("path_head",path_head)
|
||||
path.pop(len(path)-1)
|
||||
path.reverse()
|
||||
path_true=[]
|
||||
bfss =Bfs(Game)
|
||||
|
||||
|
||||
for i in path:
|
||||
z=str(i)
|
||||
print("Z:",z)
|
||||
x=z[1]
|
||||
y=z[4]
|
||||
x=int(x)*64
|
||||
y=int(y)*64
|
||||
a=bfss.get_cell_number(x,y)
|
||||
path_true.append(a)
|
||||
print("path:",path)
|
||||
print("path_true:",path_true)
|
||||
bfss.move_agent(path_true)
|
||||
|
||||
|
||||
|
||||
|
||||
g = Game()
|
||||
g.new()
|
||||
|
Loading…
Reference in New Issue
Block a user