poprawa sieci neuronowej oraz drobne zmiany

This commit is contained in:
Aliaksandr Halaunia 2023-06-16 15:54:54 +02:00
parent 71b2ecc23f
commit ee864b16c7
4 changed files with 18 additions and 31 deletions

View File

@ -303,7 +303,7 @@ class Game:
goal = x//TILE_SIZE,y//TILE_SIZE
mob_image = self.sauron.image_path
prediction = self.prediction_road(x,y,mob_image)
prediction = "SAURON"
#prediction = "SAURON"
while True: #do poprawienia poprawne rozpoznawanie
print("goal: ",goal)
if prediction == "SAURON":
@ -331,7 +331,7 @@ class Game:
prediction = self.prediction_road(x,y,mob_image)
prediction = "ORK_ARCHER"
elif prediction == "ORK_INFANTRY":
elif prediction == "ORK_MELEE":
if self.agent.level < self.infantry_ork.level:
lvl = 'nie'
else:
@ -356,7 +356,7 @@ class Game:
goal = x//TILE_SIZE,y//TILE_SIZE
mob_image = self.sauron.image_path
prediction = self.prediction_road(x,y,mob_image)
prediction = "SAURON"
#prediction = "SAURON"
elif prediction == "ORK_ARCHER":
if self.agent.level < self.archer_ork.level:
lvl = 'nie'
@ -384,7 +384,7 @@ class Game:
goal = x//TILE_SIZE,y//TILE_SIZE
mob_image = self.infantry_ork.image_path
prediction = self.prediction_road(x,y,mob_image)
prediction = "ORK_INFANTRY"
#prediction = "ORK_INFANTRY"

View File

@ -14,7 +14,7 @@ class Archer_ork(pygame.sprite.Sprite):
self.width = TILE_SIZE
self.height = TILE_SIZE
self.image_path = "./zdjecia/ORK_ARCHER/ork_lucznik.png"
self.image_path = "./zdjecia/ORK_ARCHER/ork_archer (889).jpg"
self.ARCHER_ORK_IMG = pygame.image.load(self.image_path)
self.ARCHER_ORK = pygame.transform.scale(self.ARCHER_ORK_IMG,(64,64))
@ -45,7 +45,7 @@ class Infantry_ork(pygame.sprite.Sprite):
self.width = TILE_SIZE
self.height = TILE_SIZE
self.image_path = "./zdjecia/ORK_MELEE/ork-piechota.png"
self.image_path = "C:\\mobs_photos\\ork_melee (11).jpg"#sciezka do zmiany
self.INFANTRY_ORK_IMG = pygame.image.load(self.image_path)
self.INFANTRY_ORK = pygame.transform.scale(self.INFANTRY_ORK_IMG,(64,64))
@ -77,7 +77,7 @@ class Sauron(pygame.sprite.Sprite):
self.width = TILE_SIZE
self.height = TILE_SIZE
self.image_path = "./zdjecia/SAURON/sauron.png"
self.image_path = "C:\\mobs_photos\\sauron (700).jpg"#sciezka do zmiany
self.SAURON_IMG = pygame.image.load(self.image_path)
self.SAURON = pygame.transform.scale(self.SAURON_IMG,(64,64))

35
nn.py
View File

@ -11,8 +11,8 @@ import pathlib
class NeuralN:
# @staticmethod
def predict(self,image_path):
# @staticmethod
def predict(self, image_path):
data_dir = pathlib.Path('zdjecia')
saved_model_path = pathlib.Path('trained_model.h5')
class_names_path = pathlib.Path("class_names.pkl")
@ -47,12 +47,6 @@ class NeuralN:
image_size=(180, 180),
batch_size=32)
# test_ds = tf.keras.utils.image_dataset_from_directory(
# data_dir,
# seed=123,
# image_size=(180, 180),
# batch_size=32)
class_names = train_ds.class_names
print(class_names)
@ -77,7 +71,7 @@ class NeuralN:
metrics=['accuracy'])
model.summary()
epochs = 1
epochs = 10
history = model.fit(
train_ds,
validation_data=val_ds,
@ -92,31 +86,24 @@ class NeuralN:
probability_model = tf.keras.Sequential([model,
tf.keras.layers.Softmax()])
#image_path = image
image_path = pathlib.Path('zdjecia\ORK_ARCHER\ork_archer (2).png')
# image_path = image
#image_path = pathlib.Path('')
image = Image.open(image_path)
# Preprocess the image
image = image.resize((180, 180)) # Resize to match the input size of the model
image_array = tf.keras.preprocessing.image.img_to_array(image)
image_array = image_array / 255.0 # Normalize pixel values
# Add an extra dimension to the image array
image_array = tf.expand_dims(image_array, 0)
image_array = tf.expand_dims(image, 0)
# Make the prediction
predictions = probability_model.predict(image_array)
model = tf.keras.models.load_model("trained_model.h5")
prediction = model.predict(image_array)
# Convert the predictions to class labels
predicted_label = class_names[predictions[0].argmax()]
#actions = {
# 'ORK_MELEE': 'fight',
# 'ORK_ARCHER': 'change_dir',
# 'SAURON': 'change_dir'
#}
# Get the action for the predicted character
#action = actions.get(predicted_label, 'unknown')
predicted_label = class_names[prediction[0].argmax()]
# Print the predicted label
print(predicted_label)
return predicted_label#, action
return predicted_label

Binary file not shown.