Intelegentny_Pszczelarz/.venv/Lib/site-packages/jax/_src/interpreters/xla.py

445 lines
16 KiB
Python
Raw Normal View History

2023-06-19 00:49:18 +02:00
# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lowering of jaxprs into XLA (HLO) computations.
from collections import defaultdict
import dataclasses
import functools
from functools import partial
import itertools as it
import math
import operator
import re
from typing import (Any, Callable, Dict, Optional, Protocol,
Sequence, Set, Type, Tuple, Union)
import numpy as np
from jax._src.config import config
from jax._src import core
from jax._src import dtypes
from jax._src import source_info_util
from jax._src.abstract_arrays import numpy_scalar_types
from jax._src.core import ConcreteArray, ShapedArray
from jax._src.sharding_impls import AxisEnv
from jax._src.util import safe_zip, safe_map
from jax._src.typing import Shape
from jax._src import xla_bridge as xb
from jax._src.lib import xla_client as xc
map, unsafe_map = safe_map, map
zip, unsafe_zip = safe_zip, zip
xe = xc._xla
xops = xc._xla.ops
# Types
def identity(x): return x
_scalar_types = dtypes.python_scalar_dtypes.keys()
def _make_array_shape(aval: ShapedArray) -> Sequence[xc.Shape]:
aval = core.physical_aval(aval)
dtype = np.dtype('bool') if aval.dtype == dtypes.float0 else aval.dtype
return (xc.Shape.array_shape(dtype, aval.shape),)
def get_canonical_source_file(frame: source_info_util.Frame):
source_file = frame.file_name
if config.jax_hlo_source_file_canonicalization_regex:
source_file = re.sub(config.jax_hlo_source_file_canonicalization_regex,
'', source_file)
return source_file
# Utilities
def parameter(builder, num, shape, name=None, replicated=None):
if name is None:
name = ''
if replicated is None:
replicated = []
elif isinstance(replicated, bool):
replicated = [replicated] * shape.leaf_count()
return xops.Parameter(builder, num,
shape.with_major_to_minor_layout_if_absent(), name,
replicated)
# HLO instructions optionally can be annotated to say how the output should be
# spatially partitioned (represented in XLA as OpSharding protos, see
# sharding_to_proto). For array outputs, the annotation is either an int per
# dimension specifying the number of ways that dimension divided (i.e. the total
# number of shards is the product), or None to indicate the array should be
# replicated. Tuple outputs are represented as tuples thereof. XLA supports
# arbitrary tuple nesting, but JAX only uses one level of tupling (and our type
# checkers don't support recursive types), so we only represent one level of
# nesting in this type definition.
SpatialSharding = Union[Shape,
None,
Tuple[Optional[Shape], ...]]
def sharding_to_proto(sharding: SpatialSharding):
"""Converts a SpatialSharding to an OpSharding.
See
https://github.com/tensorflow/tensorflow/blob/main/tensorflow/compiler/xla/xla_data.proto#L601
for details on the OpSharding proto.
"""
proto = xc.OpSharding()
if isinstance(sharding, tuple) and not isinstance(sharding[0], int):
assert all(s is None or isinstance(s, tuple) for s in sharding)
return tuple_sharding_proto(list(map(sharding_to_proto, sharding))) # type: ignore
if sharding is None:
proto.type = xc.OpSharding.Type.REPLICATED
else:
proto.type = xc.OpSharding.Type.OTHER
proto.tile_assignment_dimensions = list(sharding) # type: ignore
proto.tile_assignment_devices = list(range(np.prod(sharding))) # type: ignore
return proto
def tuple_sharding_proto(elems):
proto = xc.OpSharding()
assert all(isinstance(e, type(proto)) for e in elems)
proto.type = xc.OpSharding.Type.TUPLE
proto.tuple_shardings = elems
return proto
def with_sharding_proto(builder, sharding_proto, op_fn, *args, **kwargs):
"""Builds op_fn(*args, **kwargs) with sharding annotation."""
builder.set_sharding(sharding_proto)
try:
return op_fn(*args, **kwargs)
finally:
builder.clear_sharding()
def with_sharding(builder, sharding: SpatialSharding, op_fn, *args, **kwargs):
"""Builds op_fn(*args, **kwargs) with sharding annotation."""
return with_sharding_proto(builder, sharding_to_proto(sharding), op_fn, *args,
**kwargs)
### handlers
# JAX abstract values -> XLA shapes
def aval_to_xla_shapes(aval: core.AbstractValue) -> Sequence[xc.Shape]:
try:
return xla_shape_handlers[type(aval)](aval)
except KeyError as err:
raise TypeError(f"No xla_shape_handler for type: {type(aval)}") from err
xla_shape_handlers: Dict[Type[core.AbstractValue],
Callable[[Any], Sequence[xc.Shape]]] = {
ShapedArray: _make_array_shape,
ConcreteArray: _make_array_shape,
}
xla_shape_handlers[core.AbstractToken] = lambda _: (xc.Shape.token_shape(),)
# IR constants
# TODO(mattjj): try to remove this canonicalize_dtype stuff
def canonicalize_dtype(x):
typ = type(x)
handler = canonicalize_dtype_handlers.get(typ)
if handler: return handler(x)
for typ in typ.__mro__:
handler = canonicalize_dtype_handlers.get(typ)
if handler: return handler(x)
if hasattr(x, '__jax_array__'):
return canonicalize_dtype(x.__jax_array__())
raise TypeError(f"No canonicalize_dtype handler for type: {type(x)}")
def _canonicalize_masked_array_dtype(x):
raise ValueError("numpy masked arrays are not supported as direct inputs to JAX functions. "
"Use arr.filled() to convert the value to a standard numpy array.")
def _canonicalize_ndarray_dtype(x):
return np.asarray(x, dtypes.canonicalize_dtype(x.dtype))
def _canonicalize_python_scalar_dtype(typ, x):
return np.asarray(
x, dtypes.canonicalize_dtype(dtypes._scalar_type_to_dtype(typ, x)))
canonicalize_dtype_handlers: Dict[Any, Callable] = {}
canonicalize_dtype_handlers.update(
(t, _canonicalize_ndarray_dtype) for t in numpy_scalar_types)
canonicalize_dtype_handlers[np.ndarray] = _canonicalize_ndarray_dtype
canonicalize_dtype_handlers[np.ma.MaskedArray] = _canonicalize_masked_array_dtype
canonicalize_dtype_handlers.update(
(t, partial(_canonicalize_python_scalar_dtype, t)) for t in _scalar_types)
canonicalize_dtype_handlers[core.Token] = identity
canonicalize_dtype_handlers[core.DArray] = identity
def abstractify(x) -> Any:
typ = type(x)
aval_fn = pytype_aval_mappings.get(typ)
if aval_fn: return aval_fn(x)
for typ in typ.__mro__:
aval_fn = pytype_aval_mappings.get(typ)
if aval_fn: return aval_fn(x)
if hasattr(x, '__jax_array__'):
return abstractify(x.__jax_array__())
raise TypeError(f"Argument '{x}' of type '{type(x)}' is not a valid JAX type")
def _make_abstract_python_scalar(typ, val):
# Note: all python scalar types are weak except bool, because bool only
# comes in a single width.
return ShapedArray((), dtypes._scalar_type_to_dtype(typ, val),
weak_type=typ is not bool)
def _make_shaped_array_for_numpy_scalar(x: np.generic) -> ShapedArray:
dtype = np.dtype(x)
dtypes.check_valid_dtype(dtype)
return ShapedArray(np.shape(x), dtypes.canonicalize_dtype(dtype))
def _make_shaped_array_for_numpy_array(x: np.ndarray) -> ShapedArray:
dtype = x.dtype
dtypes.check_valid_dtype(dtype)
return ShapedArray(x.shape, dtypes.canonicalize_dtype(dtype))
pytype_aval_mappings: Dict[Any, Callable[[Any], core.AbstractValue]] = {}
pytype_aval_mappings[core.DArray] = operator.attrgetter('_aval')
pytype_aval_mappings[core.Token] = lambda _: core.abstract_token
pytype_aval_mappings.update((t, _make_shaped_array_for_numpy_scalar)
for t in numpy_scalar_types)
pytype_aval_mappings[np.ndarray] = _make_shaped_array_for_numpy_array
pytype_aval_mappings.update(
(t, partial(_make_abstract_python_scalar, t)) for t in _scalar_types)
def primitive_subcomputation(platform: str, axis_env: 'AxisEnv',
prim: core.Primitive,
avals_in: Sequence[core.AbstractValue],
avals_out: Sequence[core.AbstractValue],
**params):
c = xc.XlaBuilder(f"primitive_computation_{prim.name}")
counts = it.count()
xla_args = [parameter(c, next(counts), xla_shape)
for a in avals_in for xla_shape in aval_to_xla_shapes(a)]
if (platform is not None and
prim in _backend_specific_translations[platform]):
rule = _backend_specific_translations[platform][prim]
elif prim in _translations:
rule = _translations[prim]
ctx = TranslationContext(builder=c, platform=platform, axis_env=axis_env,
name_stack=source_info_util.new_name_stack())
ans = rule(ctx, avals_in, avals_out, *xla_args, **params)
if prim.multiple_results:
return c.build(xops.Tuple(c, ans))
else:
x, = ans
return c.build(x)
### compiling jaxprs
@dataclasses.dataclass
class TranslationContext:
builder: xc.XlaBuilder
# TODO(phawkins): make platform non-optional. We should always be translating
# with a specific platform in mind.
platform: Optional[str]
axis_env: AxisEnv
name_stack: Union[str, source_info_util.NameStack]
def replace(self, **kw): return dataclasses.replace(self, **kw)
def xla_destructure(c, ans):
num_elements = len(c.get_shape(ans).tuple_shapes())
return [xops.GetTupleElement(ans, i) for i in range(num_elements)]
def check_backend_matches(inner_backend, outer_backend):
# For nested calls, the outermost call sets the backend for all inner calls;
# it's an error if the inner call has a conflicting explicit backend spec.
if inner_backend is None:
return
if (inner_backend != outer_backend and
outer_backend not in xb.expand_platform_alias(inner_backend)):
raise ValueError(
f"Outer-jit backend specification {outer_backend} must match explicit "
f"inner-jit backend specification {inner_backend}.")
def extend_axis_env(env: AxisEnv, name, size: int):
return AxisEnv(env.nreps, env.names + (name,), env.sizes + (size,))
def axis_read(axis_env, axis_name):
try:
return max(i for i, name in enumerate(axis_env.names) if name == axis_name)
except ValueError:
raise NameError(f"unbound axis name: {axis_name}") from None
def axis_groups(axis_env: AxisEnv, name) -> Tuple[Tuple[int, ...]]:
if not isinstance(name, (list, tuple)):
name = (name,)
mesh_axes = tuple(unsafe_map(partial(axis_read, axis_env), name))
trailing_size, ragged = divmod(axis_env.nreps, math.prod(axis_env.sizes))
assert not ragged
mesh_spec = axis_env.sizes + (trailing_size,)
return _axis_groups(mesh_spec, mesh_axes)
def _axis_groups(mesh_spec, mesh_axes):
"""Computes replica group ids for a collective performed over a subset of the mesh.
Args:
mesh_spec: A sequence of integers representing the mesh shape.
mesh_axes: A sequence of integers between 0 and `len(mesh_spec)` (exclusive)
indicating over which axes the collective is performed.
Returns:
A tuple of replica groups (i.e. tuples containing replica ids).
"""
iota = np.arange(math.prod(mesh_spec)).reshape(mesh_spec)
groups = np.reshape(
np.moveaxis(iota, mesh_axes, np.arange(len(mesh_axes))),
(math.prod(np.take(mesh_spec, mesh_axes)), -1))
return tuple(unsafe_map(tuple, groups.T))
# TODO(mattjj,skyewm): the functions here are utilities for checking if
# not-yet-supported features are used with multi-host programming
def jaxpr_collectives(jaxpr):
"""Generates all the collective primitives anywhere inside a Jaxpr."""
for eqn in jaxpr.eqns:
if eqn.primitive in _collective_primitives:
yield eqn.primitive
for subjaxpr in core.subjaxprs(jaxpr): yield from jaxpr_collectives(subjaxpr)
### xla_call underlying jit
def xla_call_partial_eval_update_params(
params: core.ParamDict, kept_inputs: Sequence[bool], num_new_inputs: int
) -> core.ParamDict:
donated_invars = params['donated_invars']
if not kept_inputs and donated_invars:
# JaxprTrace.post_process_call creates a call with no input tracers
donated_invars = (False,) * num_new_inputs
else:
assert len(kept_inputs) == len(donated_invars)
# JaxprTrace.process_call drops known input tracers
donated_invars = [d for d, kept in zip(donated_invars, kept_inputs) if kept]
# Any new inputs are prepended to the left, so mark those as not donated.
donated_invars = [False] * num_new_inputs + donated_invars
return dict(params, donated_invars=tuple(donated_invars))
def xla_call_jvp_update_params(params, nz_tangents):
donated_invars = params['donated_invars']
donated_tangents = [d for d, nz in zip(donated_invars, nz_tangents) if nz]
new_donated_invars = (*donated_invars, *donated_tangents)
return dict(params, donated_invars=new_donated_invars)
def xla_call_transpose_update_params(params, undef_primals, nonzero_cts):
donated_invars = params['donated_invars']
donated_primals = [d for d, u in zip(donated_invars, undef_primals) if not u]
donated_cotangents = [False for nz in nonzero_cts if nz]
return dict(params, donated_invars=(*donated_primals, *donated_cotangents))
### translation tables
MYPY = False
if not MYPY:
class TranslationRule(Protocol):
def __call__(self, ctx: TranslationContext,
avals_in: Sequence[core.AbstractValue],
avals_out: Sequence[core.AbstractValue],
*args: xc.XlaOp, **kw
) -> Sequence[xc.XlaOp]:
"""A translation rule lowers a primitive invocation into an XLA HLO."""
else:
TranslationRule = Any
_translations: Dict[core.Primitive, TranslationRule] = {}
_backend_specific_translations: Dict[str, Dict[core.Primitive, TranslationRule]]
_backend_specific_translations = defaultdict(dict)
_collective_primitives: Set[core.Primitive] = set()
initial_style_primitives: Set[core.Primitive] = set()
def register_initial_style_primitive(prim: core.Primitive):
initial_style_primitives.add(prim)
def register_collective_primitive(prim: core.Primitive):
_collective_primitives.add(prim)
def register_translation(prim: core.Primitive, rule: TranslationRule, *,
platform: Optional[str] = None) -> None:
if platform is None:
_translations[prim] = rule
else:
# For backward compatibility reasons, we allow rules to be registered
# under "gpu" even though the platforms are now called "cuda" and "rocm".
# TODO(phawkins): fix up users to specify either "cuda" or "rocm" and remove
# this expansion.
for p in xb.expand_platform_alias(platform):
_backend_specific_translations[p][prim] = rule
# As a temporary backward compatibility measure, we use an adapter class to
# convert from the old styles of translation rules to the newer ones.
# TODO(phawkins): update users of the older translation rule styles and remove
# the adapters.
class _TranslationRuleAdapter:
def __init__(self, translations,
wrap_fn: Callable[[core.Primitive, Callable], TranslationRule]):
self._translations = translations
self._wrap_fn = wrap_fn
def __setitem__(self, key: core.Primitive, value: Callable):
wrapped = self._wrap_fn(key, value)
for translations in self._translations:
translations[key] = wrapped
def _wrap_old_translation(prim: core.Primitive, f: Callable) -> TranslationRule:
@functools.wraps(f)
def wrapped(ctx: TranslationContext, avals_in: Sequence[core.AbstractValue],
avals_out: Sequence[core.AbstractValue],
*args: xc.XlaOp, **kw) -> Sequence[xc.XlaOp]:
ans = f(ctx.builder, *args, **kw)
if (prim.multiple_results or
any(len(aval_to_xla_shapes(aval)) > 1 for aval in avals_out)):
return xla_destructure(ctx.builder, ans)
else:
return [ans]
return wrapped
translations : _TranslationRuleAdapter
translations = _TranslationRuleAdapter([_translations], _wrap_old_translation)
class _BackendSpecificTranslationsAdapter(defaultdict):
def __missing__(self, key):
translation_tables = [_backend_specific_translations[p]
for p in xb.expand_platform_alias(key)]
ret = self[key] = _TranslationRuleAdapter(
translation_tables, _wrap_old_translation)
return ret
backend_specific_translations: Dict[str, _TranslationRuleAdapter]
backend_specific_translations = _BackendSpecificTranslationsAdapter()