265 lines
10 KiB
Python
265 lines
10 KiB
Python
|
# Copyright 2018 The JAX Authors.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# https://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
"""JAX-based Dormand-Prince ODE integration with adaptive stepsize.
|
||
|
|
||
|
Integrate systems of ordinary differential equations (ODEs) using the JAX
|
||
|
autograd/diff library and the Dormand-Prince method for adaptive integration
|
||
|
stepsize calculation. Provides improved integration accuracy over fixed
|
||
|
stepsize integration methods.
|
||
|
|
||
|
For details of the mixed 4th/5th order Runge-Kutta integration method, see
|
||
|
https://doi.org/10.1090/S0025-5718-1986-0815836-3
|
||
|
|
||
|
Adjoint algorithm based on Appendix C of https://arxiv.org/pdf/1806.07366.pdf
|
||
|
"""
|
||
|
|
||
|
|
||
|
from functools import partial
|
||
|
import operator as op
|
||
|
|
||
|
import jax
|
||
|
import jax.numpy as jnp
|
||
|
from jax._src import core
|
||
|
from jax import custom_derivatives
|
||
|
from jax import lax
|
||
|
from jax._src.numpy.util import promote_dtypes_inexact
|
||
|
from jax._src.util import safe_map, safe_zip
|
||
|
from jax.flatten_util import ravel_pytree
|
||
|
from jax.tree_util import tree_leaves, tree_map
|
||
|
from jax._src import linear_util as lu
|
||
|
|
||
|
map = safe_map
|
||
|
zip = safe_zip
|
||
|
|
||
|
|
||
|
def ravel_first_arg(f, unravel):
|
||
|
return ravel_first_arg_(lu.wrap_init(f), unravel).call_wrapped
|
||
|
|
||
|
@lu.transformation
|
||
|
def ravel_first_arg_(unravel, y_flat, *args):
|
||
|
y = unravel(y_flat)
|
||
|
ans = yield (y,) + args, {}
|
||
|
ans_flat, _ = ravel_pytree(ans)
|
||
|
yield ans_flat
|
||
|
|
||
|
def interp_fit_dopri(y0, y1, k, dt):
|
||
|
# Fit a polynomial to the results of a Runge-Kutta step.
|
||
|
dps_c_mid = jnp.array([
|
||
|
6025192743 / 30085553152 / 2, 0, 51252292925 / 65400821598 / 2,
|
||
|
-2691868925 / 45128329728 / 2, 187940372067 / 1594534317056 / 2,
|
||
|
-1776094331 / 19743644256 / 2, 11237099 / 235043384 / 2], dtype=y0.dtype)
|
||
|
y_mid = y0 + dt.astype(y0.dtype) * jnp.dot(dps_c_mid, k)
|
||
|
return jnp.asarray(fit_4th_order_polynomial(y0, y1, y_mid, k[0], k[-1], dt))
|
||
|
|
||
|
def fit_4th_order_polynomial(y0, y1, y_mid, dy0, dy1, dt):
|
||
|
dt = dt.astype(y0.dtype)
|
||
|
a = -2.*dt*dy0 + 2.*dt*dy1 - 8.*y0 - 8.*y1 + 16.*y_mid
|
||
|
b = 5.*dt*dy0 - 3.*dt*dy1 + 18.*y0 + 14.*y1 - 32.*y_mid
|
||
|
c = -4.*dt*dy0 + dt*dy1 - 11.*y0 - 5.*y1 + 16.*y_mid
|
||
|
d = dt * dy0
|
||
|
e = y0
|
||
|
return a, b, c, d, e
|
||
|
|
||
|
def initial_step_size(fun, t0, y0, order, rtol, atol, f0):
|
||
|
# Algorithm from:
|
||
|
# E. Hairer, S. P. Norsett G. Wanner,
|
||
|
# Solving Ordinary Differential Equations I: Nonstiff Problems, Sec. II.4.
|
||
|
y0, f0 = promote_dtypes_inexact(y0, f0)
|
||
|
dtype = y0.dtype
|
||
|
|
||
|
scale = atol + jnp.abs(y0) * rtol
|
||
|
d0 = jnp.linalg.norm(y0 / scale.astype(dtype))
|
||
|
d1 = jnp.linalg.norm(f0 / scale.astype(dtype))
|
||
|
|
||
|
h0 = jnp.where((d0 < 1e-5) | (d1 < 1e-5), 1e-6, 0.01 * d0 / d1)
|
||
|
y1 = y0 + h0.astype(dtype) * f0
|
||
|
f1 = fun(y1, t0 + h0)
|
||
|
d2 = jnp.linalg.norm((f1 - f0) / scale.astype(dtype)) / h0
|
||
|
|
||
|
h1 = jnp.where((d1 <= 1e-15) & (d2 <= 1e-15),
|
||
|
jnp.maximum(1e-6, h0 * 1e-3),
|
||
|
(0.01 / jnp.maximum(d1, d2)) ** (1. / (order + 1.)))
|
||
|
|
||
|
return jnp.minimum(100. * h0, h1)
|
||
|
|
||
|
def runge_kutta_step(func, y0, f0, t0, dt):
|
||
|
# Dopri5 Butcher tableaux
|
||
|
alpha = jnp.array([1 / 5, 3 / 10, 4 / 5, 8 / 9, 1., 1., 0], dtype=dt.dtype)
|
||
|
beta = jnp.array(
|
||
|
[[1 / 5, 0, 0, 0, 0, 0, 0], [3 / 40, 9 / 40, 0, 0, 0, 0, 0],
|
||
|
[44 / 45, -56 / 15, 32 / 9, 0, 0, 0, 0],
|
||
|
[19372 / 6561, -25360 / 2187, 64448 / 6561, -212 / 729, 0, 0, 0],
|
||
|
[9017 / 3168, -355 / 33, 46732 / 5247, 49 / 176, -5103 / 18656, 0, 0],
|
||
|
[35 / 384, 0, 500 / 1113, 125 / 192, -2187 / 6784, 11 / 84, 0]],
|
||
|
dtype=f0.dtype)
|
||
|
c_sol = jnp.array(
|
||
|
[35 / 384, 0, 500 / 1113, 125 / 192, -2187 / 6784, 11 / 84, 0],
|
||
|
dtype=f0.dtype)
|
||
|
c_error = jnp.array([
|
||
|
35 / 384 - 1951 / 21600, 0, 500 / 1113 - 22642 / 50085, 125 / 192 -
|
||
|
451 / 720, -2187 / 6784 - -12231 / 42400, 11 / 84 - 649 / 6300, -1. / 60.
|
||
|
], dtype=f0.dtype)
|
||
|
|
||
|
def body_fun(i, k):
|
||
|
ti = t0 + dt * alpha[i-1]
|
||
|
yi = y0 + dt.astype(f0.dtype) * jnp.dot(beta[i-1, :], k)
|
||
|
ft = func(yi, ti)
|
||
|
return k.at[i, :].set(ft)
|
||
|
|
||
|
k = jnp.zeros((7, f0.shape[0]), f0.dtype).at[0, :].set(f0)
|
||
|
k = lax.fori_loop(1, 7, body_fun, k)
|
||
|
|
||
|
y1 = dt.astype(f0.dtype) * jnp.dot(c_sol, k) + y0
|
||
|
y1_error = dt.astype(f0.dtype) * jnp.dot(c_error, k)
|
||
|
f1 = k[-1]
|
||
|
return y1, f1, y1_error, k
|
||
|
|
||
|
def abs2(x):
|
||
|
if jnp.iscomplexobj(x):
|
||
|
return x.real ** 2 + x.imag ** 2
|
||
|
else:
|
||
|
return x ** 2
|
||
|
|
||
|
def mean_error_ratio(error_estimate, rtol, atol, y0, y1):
|
||
|
err_tol = atol + rtol * jnp.maximum(jnp.abs(y0), jnp.abs(y1))
|
||
|
err_ratio = error_estimate / err_tol.astype(error_estimate.dtype)
|
||
|
return jnp.sqrt(jnp.mean(abs2(err_ratio)))
|
||
|
|
||
|
def optimal_step_size(last_step, mean_error_ratio, safety=0.9, ifactor=10.0,
|
||
|
dfactor=0.2, order=5.0):
|
||
|
"""Compute optimal Runge-Kutta stepsize."""
|
||
|
dfactor = jnp.where(mean_error_ratio < 1, 1.0, dfactor)
|
||
|
|
||
|
factor = jnp.minimum(ifactor,
|
||
|
jnp.maximum(mean_error_ratio**(-1.0 / order) * safety, dfactor))
|
||
|
return jnp.where(mean_error_ratio == 0, last_step * ifactor, last_step * factor)
|
||
|
|
||
|
def odeint(func, y0, t, *args, rtol=1.4e-8, atol=1.4e-8, mxstep=jnp.inf, hmax=jnp.inf):
|
||
|
"""Adaptive stepsize (Dormand-Prince) Runge-Kutta odeint implementation.
|
||
|
|
||
|
Args:
|
||
|
func: function to evaluate the time derivative of the solution `y` at time
|
||
|
`t` as `func(y, t, *args)`, producing the same shape/structure as `y0`.
|
||
|
y0: array or pytree of arrays representing the initial value for the state.
|
||
|
t: array of float times for evaluation, like `jnp.linspace(0., 10., 101)`,
|
||
|
in which the values must be strictly increasing.
|
||
|
*args: tuple of additional arguments for `func`, which must be arrays
|
||
|
scalars, or (nested) standard Python containers (tuples, lists, dicts,
|
||
|
namedtuples, i.e. pytrees) of those types.
|
||
|
rtol: float, relative local error tolerance for solver (optional).
|
||
|
atol: float, absolute local error tolerance for solver (optional).
|
||
|
mxstep: int, maximum number of steps to take for each timepoint (optional).
|
||
|
hmax: float, maximum step size allowed (optional).
|
||
|
|
||
|
Returns:
|
||
|
Values of the solution `y` (i.e. integrated system values) at each time
|
||
|
point in `t`, represented as an array (or pytree of arrays) with the same
|
||
|
shape/structure as `y0` except with a new leading axis of length `len(t)`.
|
||
|
"""
|
||
|
for arg in tree_leaves(args):
|
||
|
if not isinstance(arg, core.Tracer) and not core.valid_jaxtype(arg):
|
||
|
raise TypeError(
|
||
|
f"The contents of odeint *args must be arrays or scalars, but got {arg}.")
|
||
|
if not jnp.issubdtype(t.dtype, jnp.floating):
|
||
|
raise TypeError(f"t must be an array of floats, but got {t}.")
|
||
|
|
||
|
converted, consts = custom_derivatives.closure_convert(func, y0, t[0], *args)
|
||
|
return _odeint_wrapper(converted, rtol, atol, mxstep, hmax, y0, t, *args, *consts)
|
||
|
|
||
|
@partial(jax.jit, static_argnums=(0, 1, 2, 3, 4))
|
||
|
def _odeint_wrapper(func, rtol, atol, mxstep, hmax, y0, ts, *args):
|
||
|
y0, unravel = ravel_pytree(y0)
|
||
|
func = ravel_first_arg(func, unravel)
|
||
|
out = _odeint(func, rtol, atol, mxstep, hmax, y0, ts, *args)
|
||
|
return jax.vmap(unravel)(out)
|
||
|
|
||
|
@partial(jax.custom_vjp, nondiff_argnums=(0, 1, 2, 3, 4))
|
||
|
def _odeint(func, rtol, atol, mxstep, hmax, y0, ts, *args):
|
||
|
func_ = lambda y, t: func(y, t, *args)
|
||
|
|
||
|
def scan_fun(carry, target_t):
|
||
|
|
||
|
def cond_fun(state):
|
||
|
i, _, _, t, dt, _, _ = state
|
||
|
return (t < target_t) & (i < mxstep) & (dt > 0)
|
||
|
|
||
|
def body_fun(state):
|
||
|
i, y, f, t, dt, last_t, interp_coeff = state
|
||
|
next_y, next_f, next_y_error, k = runge_kutta_step(func_, y, f, t, dt)
|
||
|
next_t = t + dt
|
||
|
error_ratio = mean_error_ratio(next_y_error, rtol, atol, y, next_y)
|
||
|
new_interp_coeff = interp_fit_dopri(y, next_y, k, dt)
|
||
|
dt = jnp.clip(optimal_step_size(dt, error_ratio), a_min=0., a_max=hmax)
|
||
|
|
||
|
new = [i + 1, next_y, next_f, next_t, dt, t, new_interp_coeff]
|
||
|
old = [i + 1, y, f, t, dt, last_t, interp_coeff]
|
||
|
return map(partial(jnp.where, error_ratio <= 1.), new, old)
|
||
|
|
||
|
_, *carry = lax.while_loop(cond_fun, body_fun, [0] + carry)
|
||
|
_, _, t, _, last_t, interp_coeff = carry
|
||
|
relative_output_time = (target_t - last_t) / (t - last_t)
|
||
|
y_target = jnp.polyval(interp_coeff, relative_output_time.astype(interp_coeff.dtype))
|
||
|
return carry, y_target
|
||
|
|
||
|
f0 = func_(y0, ts[0])
|
||
|
dt = jnp.clip(initial_step_size(func_, ts[0], y0, 4, rtol, atol, f0), a_min=0., a_max=hmax)
|
||
|
interp_coeff = jnp.array([y0] * 5)
|
||
|
init_carry = [y0, f0, ts[0], dt, ts[0], interp_coeff]
|
||
|
_, ys = lax.scan(scan_fun, init_carry, ts[1:])
|
||
|
return jnp.concatenate((y0[None], ys))
|
||
|
|
||
|
def _odeint_fwd(func, rtol, atol, mxstep, hmax, y0, ts, *args):
|
||
|
ys = _odeint(func, rtol, atol, mxstep, hmax, y0, ts, *args)
|
||
|
return ys, (ys, ts, args)
|
||
|
|
||
|
def _odeint_rev(func, rtol, atol, mxstep, hmax, res, g):
|
||
|
ys, ts, args = res
|
||
|
|
||
|
def aug_dynamics(augmented_state, t, *args):
|
||
|
"""Original system augmented with vjp_y, vjp_t and vjp_args."""
|
||
|
y, y_bar, *_ = augmented_state
|
||
|
# `t` here is negatice time, so we need to negate again to get back to
|
||
|
# normal time. See the `odeint` invocation in `scan_fun` below.
|
||
|
y_dot, vjpfun = jax.vjp(func, y, -t, *args)
|
||
|
return (-y_dot, *vjpfun(y_bar))
|
||
|
|
||
|
y_bar = g[-1]
|
||
|
ts_bar = []
|
||
|
t0_bar = 0.
|
||
|
|
||
|
def scan_fun(carry, i):
|
||
|
y_bar, t0_bar, args_bar = carry
|
||
|
# Compute effect of moving measurement time
|
||
|
# `t_bar` should not be complex as it represents time
|
||
|
t_bar = jnp.dot(func(ys[i], ts[i], *args), g[i]).real
|
||
|
t0_bar = t0_bar - t_bar
|
||
|
# Run augmented system backwards to previous observation
|
||
|
_, y_bar, t0_bar, args_bar = odeint(
|
||
|
aug_dynamics, (ys[i], y_bar, t0_bar, args_bar),
|
||
|
jnp.array([-ts[i], -ts[i - 1]]),
|
||
|
*args, rtol=rtol, atol=atol, mxstep=mxstep, hmax=hmax)
|
||
|
y_bar, t0_bar, args_bar = tree_map(op.itemgetter(1), (y_bar, t0_bar, args_bar))
|
||
|
# Add gradient from current output
|
||
|
y_bar = y_bar + g[i - 1]
|
||
|
return (y_bar, t0_bar, args_bar), t_bar
|
||
|
|
||
|
init_carry = (g[-1], 0., tree_map(jnp.zeros_like, args))
|
||
|
(y_bar, t0_bar, args_bar), rev_ts_bar = lax.scan(
|
||
|
scan_fun, init_carry, jnp.arange(len(ts) - 1, 0, -1))
|
||
|
ts_bar = jnp.concatenate([jnp.array([t0_bar]), rev_ts_bar[::-1]])
|
||
|
return (y_bar, ts_bar, *args_bar)
|
||
|
|
||
|
_odeint.defvjp(_odeint_fwd, _odeint_rev)
|