464 lines
16 KiB
Python
464 lines
16 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
|
||
|
"""Inception V3 model for Keras.
|
||
|
|
||
|
Reference:
|
||
|
- [Rethinking the Inception Architecture for Computer Vision](
|
||
|
http://arxiv.org/abs/1512.00567) (CVPR 2016)
|
||
|
"""
|
||
|
|
||
|
import tensorflow.compat.v2 as tf
|
||
|
|
||
|
from keras import backend
|
||
|
from keras.applications import imagenet_utils
|
||
|
from keras.engine import training
|
||
|
from keras.layers import VersionAwareLayers
|
||
|
from keras.utils import data_utils
|
||
|
from keras.utils import layer_utils
|
||
|
|
||
|
# isort: off
|
||
|
from tensorflow.python.util.tf_export import keras_export
|
||
|
|
||
|
WEIGHTS_PATH = (
|
||
|
"https://storage.googleapis.com/tensorflow/keras-applications/"
|
||
|
"inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels.h5"
|
||
|
)
|
||
|
WEIGHTS_PATH_NO_TOP = (
|
||
|
"https://storage.googleapis.com/tensorflow/keras-applications/"
|
||
|
"inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5"
|
||
|
)
|
||
|
|
||
|
layers = VersionAwareLayers()
|
||
|
|
||
|
|
||
|
@keras_export(
|
||
|
"keras.applications.inception_v3.InceptionV3",
|
||
|
"keras.applications.InceptionV3",
|
||
|
)
|
||
|
def InceptionV3(
|
||
|
include_top=True,
|
||
|
weights="imagenet",
|
||
|
input_tensor=None,
|
||
|
input_shape=None,
|
||
|
pooling=None,
|
||
|
classes=1000,
|
||
|
classifier_activation="softmax",
|
||
|
):
|
||
|
"""Instantiates the Inception v3 architecture.
|
||
|
|
||
|
Reference:
|
||
|
- [Rethinking the Inception Architecture for Computer Vision](
|
||
|
http://arxiv.org/abs/1512.00567) (CVPR 2016)
|
||
|
|
||
|
This function returns a Keras image classification model,
|
||
|
optionally loaded with weights pre-trained on ImageNet.
|
||
|
|
||
|
For image classification use cases, see
|
||
|
[this page for detailed examples](
|
||
|
https://keras.io/api/applications/#usage-examples-for-image-classification-models).
|
||
|
|
||
|
For transfer learning use cases, make sure to read the
|
||
|
[guide to transfer learning & fine-tuning](
|
||
|
https://keras.io/guides/transfer_learning/).
|
||
|
|
||
|
Note: each Keras Application expects a specific kind of input preprocessing.
|
||
|
For `InceptionV3`, call
|
||
|
`tf.keras.applications.inception_v3.preprocess_input` on your inputs before
|
||
|
passing them to the model. `inception_v3.preprocess_input` will scale input
|
||
|
pixels between -1 and 1.
|
||
|
|
||
|
Args:
|
||
|
include_top: Boolean, whether to include the fully-connected
|
||
|
layer at the top, as the last layer of the network. Default to `True`.
|
||
|
weights: One of `None` (random initialization),
|
||
|
`imagenet` (pre-training on ImageNet),
|
||
|
or the path to the weights file to be loaded. Default to `imagenet`.
|
||
|
input_tensor: Optional Keras tensor (i.e. output of `layers.Input()`)
|
||
|
to use as image input for the model. `input_tensor` is useful for
|
||
|
sharing inputs between multiple different networks. Default to None.
|
||
|
input_shape: Optional shape tuple, only to be specified
|
||
|
if `include_top` is False (otherwise the input shape
|
||
|
has to be `(299, 299, 3)` (with `channels_last` data format)
|
||
|
or `(3, 299, 299)` (with `channels_first` data format).
|
||
|
It should have exactly 3 inputs channels,
|
||
|
and width and height should be no smaller than 75.
|
||
|
E.g. `(150, 150, 3)` would be one valid value.
|
||
|
`input_shape` will be ignored if the `input_tensor` is provided.
|
||
|
pooling: Optional pooling mode for feature extraction
|
||
|
when `include_top` is `False`.
|
||
|
- `None` (default) means that the output of the model will be
|
||
|
the 4D tensor output of the last convolutional block.
|
||
|
- `avg` means that global average pooling
|
||
|
will be applied to the output of the
|
||
|
last convolutional block, and thus
|
||
|
the output of the model will be a 2D tensor.
|
||
|
- `max` means that global max pooling will be applied.
|
||
|
classes: optional number of classes to classify images
|
||
|
into, only to be specified if `include_top` is True, and
|
||
|
if no `weights` argument is specified. Default to 1000.
|
||
|
classifier_activation: A `str` or callable. The activation function to use
|
||
|
on the "top" layer. Ignored unless `include_top=True`. Set
|
||
|
`classifier_activation=None` to return the logits of the "top" layer.
|
||
|
When loading pretrained weights, `classifier_activation` can only
|
||
|
be `None` or `"softmax"`.
|
||
|
|
||
|
Returns:
|
||
|
A `keras.Model` instance.
|
||
|
"""
|
||
|
if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)):
|
||
|
raise ValueError(
|
||
|
"The `weights` argument should be either "
|
||
|
"`None` (random initialization), `imagenet` "
|
||
|
"(pre-training on ImageNet), "
|
||
|
"or the path to the weights file to be loaded; "
|
||
|
f"Received: weights={weights}"
|
||
|
)
|
||
|
|
||
|
if weights == "imagenet" and include_top and classes != 1000:
|
||
|
raise ValueError(
|
||
|
'If using `weights` as `"imagenet"` with `include_top` '
|
||
|
"as true, `classes` should be 1000; "
|
||
|
f"Received classes={classes}"
|
||
|
)
|
||
|
|
||
|
# Determine proper input shape
|
||
|
input_shape = imagenet_utils.obtain_input_shape(
|
||
|
input_shape,
|
||
|
default_size=299,
|
||
|
min_size=75,
|
||
|
data_format=backend.image_data_format(),
|
||
|
require_flatten=include_top,
|
||
|
weights=weights,
|
||
|
)
|
||
|
|
||
|
if input_tensor is None:
|
||
|
img_input = layers.Input(shape=input_shape)
|
||
|
else:
|
||
|
if not backend.is_keras_tensor(input_tensor):
|
||
|
img_input = layers.Input(tensor=input_tensor, shape=input_shape)
|
||
|
else:
|
||
|
img_input = input_tensor
|
||
|
|
||
|
if backend.image_data_format() == "channels_first":
|
||
|
channel_axis = 1
|
||
|
else:
|
||
|
channel_axis = 3
|
||
|
|
||
|
x = conv2d_bn(img_input, 32, 3, 3, strides=(2, 2), padding="valid")
|
||
|
x = conv2d_bn(x, 32, 3, 3, padding="valid")
|
||
|
x = conv2d_bn(x, 64, 3, 3)
|
||
|
x = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)
|
||
|
|
||
|
x = conv2d_bn(x, 80, 1, 1, padding="valid")
|
||
|
x = conv2d_bn(x, 192, 3, 3, padding="valid")
|
||
|
x = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)
|
||
|
|
||
|
# mixed 0: 35 x 35 x 256
|
||
|
branch1x1 = conv2d_bn(x, 64, 1, 1)
|
||
|
|
||
|
branch5x5 = conv2d_bn(x, 48, 1, 1)
|
||
|
branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)
|
||
|
|
||
|
branch3x3dbl = conv2d_bn(x, 64, 1, 1)
|
||
|
branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
|
||
|
branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
|
||
|
|
||
|
branch_pool = layers.AveragePooling2D(
|
||
|
(3, 3), strides=(1, 1), padding="same"
|
||
|
)(x)
|
||
|
branch_pool = conv2d_bn(branch_pool, 32, 1, 1)
|
||
|
x = layers.concatenate(
|
||
|
[branch1x1, branch5x5, branch3x3dbl, branch_pool],
|
||
|
axis=channel_axis,
|
||
|
name="mixed0",
|
||
|
)
|
||
|
|
||
|
# mixed 1: 35 x 35 x 288
|
||
|
branch1x1 = conv2d_bn(x, 64, 1, 1)
|
||
|
|
||
|
branch5x5 = conv2d_bn(x, 48, 1, 1)
|
||
|
branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)
|
||
|
|
||
|
branch3x3dbl = conv2d_bn(x, 64, 1, 1)
|
||
|
branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
|
||
|
branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
|
||
|
|
||
|
branch_pool = layers.AveragePooling2D(
|
||
|
(3, 3), strides=(1, 1), padding="same"
|
||
|
)(x)
|
||
|
branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
|
||
|
x = layers.concatenate(
|
||
|
[branch1x1, branch5x5, branch3x3dbl, branch_pool],
|
||
|
axis=channel_axis,
|
||
|
name="mixed1",
|
||
|
)
|
||
|
|
||
|
# mixed 2: 35 x 35 x 288
|
||
|
branch1x1 = conv2d_bn(x, 64, 1, 1)
|
||
|
|
||
|
branch5x5 = conv2d_bn(x, 48, 1, 1)
|
||
|
branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)
|
||
|
|
||
|
branch3x3dbl = conv2d_bn(x, 64, 1, 1)
|
||
|
branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
|
||
|
branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
|
||
|
|
||
|
branch_pool = layers.AveragePooling2D(
|
||
|
(3, 3), strides=(1, 1), padding="same"
|
||
|
)(x)
|
||
|
branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
|
||
|
x = layers.concatenate(
|
||
|
[branch1x1, branch5x5, branch3x3dbl, branch_pool],
|
||
|
axis=channel_axis,
|
||
|
name="mixed2",
|
||
|
)
|
||
|
|
||
|
# mixed 3: 17 x 17 x 768
|
||
|
branch3x3 = conv2d_bn(x, 384, 3, 3, strides=(2, 2), padding="valid")
|
||
|
|
||
|
branch3x3dbl = conv2d_bn(x, 64, 1, 1)
|
||
|
branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
|
||
|
branch3x3dbl = conv2d_bn(
|
||
|
branch3x3dbl, 96, 3, 3, strides=(2, 2), padding="valid"
|
||
|
)
|
||
|
|
||
|
branch_pool = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)
|
||
|
x = layers.concatenate(
|
||
|
[branch3x3, branch3x3dbl, branch_pool], axis=channel_axis, name="mixed3"
|
||
|
)
|
||
|
|
||
|
# mixed 4: 17 x 17 x 768
|
||
|
branch1x1 = conv2d_bn(x, 192, 1, 1)
|
||
|
|
||
|
branch7x7 = conv2d_bn(x, 128, 1, 1)
|
||
|
branch7x7 = conv2d_bn(branch7x7, 128, 1, 7)
|
||
|
branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)
|
||
|
|
||
|
branch7x7dbl = conv2d_bn(x, 128, 1, 1)
|
||
|
branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
|
||
|
branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 1, 7)
|
||
|
branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
|
||
|
branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)
|
||
|
|
||
|
branch_pool = layers.AveragePooling2D(
|
||
|
(3, 3), strides=(1, 1), padding="same"
|
||
|
)(x)
|
||
|
branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
|
||
|
x = layers.concatenate(
|
||
|
[branch1x1, branch7x7, branch7x7dbl, branch_pool],
|
||
|
axis=channel_axis,
|
||
|
name="mixed4",
|
||
|
)
|
||
|
|
||
|
# mixed 5, 6: 17 x 17 x 768
|
||
|
for i in range(2):
|
||
|
branch1x1 = conv2d_bn(x, 192, 1, 1)
|
||
|
|
||
|
branch7x7 = conv2d_bn(x, 160, 1, 1)
|
||
|
branch7x7 = conv2d_bn(branch7x7, 160, 1, 7)
|
||
|
branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)
|
||
|
|
||
|
branch7x7dbl = conv2d_bn(x, 160, 1, 1)
|
||
|
branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
|
||
|
branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 1, 7)
|
||
|
branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
|
||
|
branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)
|
||
|
|
||
|
branch_pool = layers.AveragePooling2D(
|
||
|
(3, 3), strides=(1, 1), padding="same"
|
||
|
)(x)
|
||
|
branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
|
||
|
x = layers.concatenate(
|
||
|
[branch1x1, branch7x7, branch7x7dbl, branch_pool],
|
||
|
axis=channel_axis,
|
||
|
name="mixed" + str(5 + i),
|
||
|
)
|
||
|
|
||
|
# mixed 7: 17 x 17 x 768
|
||
|
branch1x1 = conv2d_bn(x, 192, 1, 1)
|
||
|
|
||
|
branch7x7 = conv2d_bn(x, 192, 1, 1)
|
||
|
branch7x7 = conv2d_bn(branch7x7, 192, 1, 7)
|
||
|
branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)
|
||
|
|
||
|
branch7x7dbl = conv2d_bn(x, 192, 1, 1)
|
||
|
branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
|
||
|
branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)
|
||
|
branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
|
||
|
branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)
|
||
|
|
||
|
branch_pool = layers.AveragePooling2D(
|
||
|
(3, 3), strides=(1, 1), padding="same"
|
||
|
)(x)
|
||
|
branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
|
||
|
x = layers.concatenate(
|
||
|
[branch1x1, branch7x7, branch7x7dbl, branch_pool],
|
||
|
axis=channel_axis,
|
||
|
name="mixed7",
|
||
|
)
|
||
|
|
||
|
# mixed 8: 8 x 8 x 1280
|
||
|
branch3x3 = conv2d_bn(x, 192, 1, 1)
|
||
|
branch3x3 = conv2d_bn(branch3x3, 320, 3, 3, strides=(2, 2), padding="valid")
|
||
|
|
||
|
branch7x7x3 = conv2d_bn(x, 192, 1, 1)
|
||
|
branch7x7x3 = conv2d_bn(branch7x7x3, 192, 1, 7)
|
||
|
branch7x7x3 = conv2d_bn(branch7x7x3, 192, 7, 1)
|
||
|
branch7x7x3 = conv2d_bn(
|
||
|
branch7x7x3, 192, 3, 3, strides=(2, 2), padding="valid"
|
||
|
)
|
||
|
|
||
|
branch_pool = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)
|
||
|
x = layers.concatenate(
|
||
|
[branch3x3, branch7x7x3, branch_pool], axis=channel_axis, name="mixed8"
|
||
|
)
|
||
|
|
||
|
# mixed 9: 8 x 8 x 2048
|
||
|
for i in range(2):
|
||
|
branch1x1 = conv2d_bn(x, 320, 1, 1)
|
||
|
|
||
|
branch3x3 = conv2d_bn(x, 384, 1, 1)
|
||
|
branch3x3_1 = conv2d_bn(branch3x3, 384, 1, 3)
|
||
|
branch3x3_2 = conv2d_bn(branch3x3, 384, 3, 1)
|
||
|
branch3x3 = layers.concatenate(
|
||
|
[branch3x3_1, branch3x3_2],
|
||
|
axis=channel_axis,
|
||
|
name="mixed9_" + str(i),
|
||
|
)
|
||
|
|
||
|
branch3x3dbl = conv2d_bn(x, 448, 1, 1)
|
||
|
branch3x3dbl = conv2d_bn(branch3x3dbl, 384, 3, 3)
|
||
|
branch3x3dbl_1 = conv2d_bn(branch3x3dbl, 384, 1, 3)
|
||
|
branch3x3dbl_2 = conv2d_bn(branch3x3dbl, 384, 3, 1)
|
||
|
branch3x3dbl = layers.concatenate(
|
||
|
[branch3x3dbl_1, branch3x3dbl_2], axis=channel_axis
|
||
|
)
|
||
|
|
||
|
branch_pool = layers.AveragePooling2D(
|
||
|
(3, 3), strides=(1, 1), padding="same"
|
||
|
)(x)
|
||
|
branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
|
||
|
x = layers.concatenate(
|
||
|
[branch1x1, branch3x3, branch3x3dbl, branch_pool],
|
||
|
axis=channel_axis,
|
||
|
name="mixed" + str(9 + i),
|
||
|
)
|
||
|
if include_top:
|
||
|
# Classification block
|
||
|
x = layers.GlobalAveragePooling2D(name="avg_pool")(x)
|
||
|
imagenet_utils.validate_activation(classifier_activation, weights)
|
||
|
x = layers.Dense(
|
||
|
classes, activation=classifier_activation, name="predictions"
|
||
|
)(x)
|
||
|
else:
|
||
|
if pooling == "avg":
|
||
|
x = layers.GlobalAveragePooling2D()(x)
|
||
|
elif pooling == "max":
|
||
|
x = layers.GlobalMaxPooling2D()(x)
|
||
|
|
||
|
# Ensure that the model takes into account
|
||
|
# any potential predecessors of `input_tensor`.
|
||
|
if input_tensor is not None:
|
||
|
inputs = layer_utils.get_source_inputs(input_tensor)
|
||
|
else:
|
||
|
inputs = img_input
|
||
|
# Create model.
|
||
|
model = training.Model(inputs, x, name="inception_v3")
|
||
|
|
||
|
# Load weights.
|
||
|
if weights == "imagenet":
|
||
|
if include_top:
|
||
|
weights_path = data_utils.get_file(
|
||
|
"inception_v3_weights_tf_dim_ordering_tf_kernels.h5",
|
||
|
WEIGHTS_PATH,
|
||
|
cache_subdir="models",
|
||
|
file_hash="9a0d58056eeedaa3f26cb7ebd46da564",
|
||
|
)
|
||
|
else:
|
||
|
weights_path = data_utils.get_file(
|
||
|
"inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5",
|
||
|
WEIGHTS_PATH_NO_TOP,
|
||
|
cache_subdir="models",
|
||
|
file_hash="bcbd6486424b2319ff4ef7d526e38f63",
|
||
|
)
|
||
|
model.load_weights(weights_path)
|
||
|
elif weights is not None:
|
||
|
model.load_weights(weights)
|
||
|
|
||
|
return model
|
||
|
|
||
|
|
||
|
def conv2d_bn(
|
||
|
x, filters, num_row, num_col, padding="same", strides=(1, 1), name=None
|
||
|
):
|
||
|
"""Utility function to apply conv + BN.
|
||
|
|
||
|
Args:
|
||
|
x: input tensor.
|
||
|
filters: filters in `Conv2D`.
|
||
|
num_row: height of the convolution kernel.
|
||
|
num_col: width of the convolution kernel.
|
||
|
padding: padding mode in `Conv2D`.
|
||
|
strides: strides in `Conv2D`.
|
||
|
name: name of the ops; will become `name + '_conv'`
|
||
|
for the convolution and `name + '_bn'` for the
|
||
|
batch norm layer.
|
||
|
|
||
|
Returns:
|
||
|
Output tensor after applying `Conv2D` and `BatchNormalization`.
|
||
|
"""
|
||
|
if name is not None:
|
||
|
bn_name = name + "_bn"
|
||
|
conv_name = name + "_conv"
|
||
|
else:
|
||
|
bn_name = None
|
||
|
conv_name = None
|
||
|
if backend.image_data_format() == "channels_first":
|
||
|
bn_axis = 1
|
||
|
else:
|
||
|
bn_axis = 3
|
||
|
x = layers.Conv2D(
|
||
|
filters,
|
||
|
(num_row, num_col),
|
||
|
strides=strides,
|
||
|
padding=padding,
|
||
|
use_bias=False,
|
||
|
name=conv_name,
|
||
|
)(x)
|
||
|
x = layers.BatchNormalization(axis=bn_axis, scale=False, name=bn_name)(x)
|
||
|
x = layers.Activation("relu", name=name)(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
@keras_export("keras.applications.inception_v3.preprocess_input")
|
||
|
def preprocess_input(x, data_format=None):
|
||
|
return imagenet_utils.preprocess_input(
|
||
|
x, data_format=data_format, mode="tf"
|
||
|
)
|
||
|
|
||
|
|
||
|
@keras_export("keras.applications.inception_v3.decode_predictions")
|
||
|
def decode_predictions(preds, top=5):
|
||
|
return imagenet_utils.decode_predictions(preds, top=top)
|
||
|
|
||
|
|
||
|
preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format(
|
||
|
mode="",
|
||
|
ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF,
|
||
|
error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC,
|
||
|
)
|
||
|
decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
|