57 lines
1.9 KiB
Python
57 lines
1.9 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""Contains the ActivityRegularization layer."""
|
||
|
|
||
|
|
||
|
from keras import regularizers
|
||
|
from keras.engine.base_layer import Layer
|
||
|
|
||
|
# isort: off
|
||
|
from tensorflow.python.util.tf_export import keras_export
|
||
|
|
||
|
|
||
|
@keras_export("keras.layers.ActivityRegularization")
|
||
|
class ActivityRegularization(Layer):
|
||
|
"""Layer that applies an update to the cost function based input activity.
|
||
|
|
||
|
Args:
|
||
|
l1: L1 regularization factor (positive float).
|
||
|
l2: L2 regularization factor (positive float).
|
||
|
|
||
|
Input shape:
|
||
|
Arbitrary. Use the keyword argument `input_shape`
|
||
|
(tuple of integers, does not include the samples axis)
|
||
|
when using this layer as the first layer in a model.
|
||
|
|
||
|
Output shape:
|
||
|
Same shape as input.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, l1=0.0, l2=0.0, **kwargs):
|
||
|
super().__init__(
|
||
|
activity_regularizer=regularizers.L1L2(l1=l1, l2=l2), **kwargs
|
||
|
)
|
||
|
self.supports_masking = True
|
||
|
self.l1 = l1
|
||
|
self.l2 = l2
|
||
|
|
||
|
def compute_output_shape(self, input_shape):
|
||
|
return input_shape
|
||
|
|
||
|
def get_config(self):
|
||
|
config = {"l1": self.l1, "l2": self.l2}
|
||
|
base_config = super().get_config()
|
||
|
return dict(list(base_config.items()) + list(config.items()))
|