313 lines
12 KiB
Python
313 lines
12 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""Keras cropping layer for 3D input."""
|
||
|
|
||
|
|
||
|
import tensorflow.compat.v2 as tf
|
||
|
|
||
|
from keras.engine.base_layer import Layer
|
||
|
from keras.engine.input_spec import InputSpec
|
||
|
from keras.utils import conv_utils
|
||
|
|
||
|
# isort: off
|
||
|
from tensorflow.python.util.tf_export import keras_export
|
||
|
|
||
|
|
||
|
@keras_export("keras.layers.Cropping3D")
|
||
|
class Cropping3D(Layer):
|
||
|
"""Cropping layer for 3D data (e.g. spatial or spatio-temporal).
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
>>> input_shape = (2, 28, 28, 10, 3)
|
||
|
>>> x = np.arange(np.prod(input_shape)).reshape(input_shape)
|
||
|
>>> y = tf.keras.layers.Cropping3D(cropping=(2, 4, 2))(x)
|
||
|
>>> print(y.shape)
|
||
|
(2, 24, 20, 6, 3)
|
||
|
|
||
|
Args:
|
||
|
cropping: Int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints.
|
||
|
- If int: the same symmetric cropping
|
||
|
is applied to depth, height, and width.
|
||
|
- If tuple of 3 ints: interpreted as two different
|
||
|
symmetric cropping values for depth, height, and width:
|
||
|
`(symmetric_dim1_crop, symmetric_dim2_crop, symmetric_dim3_crop)`.
|
||
|
- If tuple of 3 tuples of 2 ints: interpreted as
|
||
|
`((left_dim1_crop, right_dim1_crop), (left_dim2_crop,
|
||
|
right_dim2_crop), (left_dim3_crop, right_dim3_crop))`
|
||
|
data_format: A string,
|
||
|
one of `channels_last` (default) or `channels_first`.
|
||
|
The ordering of the dimensions in the inputs.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
|
||
|
while `channels_first` corresponds to inputs with shape
|
||
|
`(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)`.
|
||
|
It defaults to the `image_data_format` value found in your
|
||
|
Keras config file at `~/.keras/keras.json`.
|
||
|
If you never set it, then it will be "channels_last".
|
||
|
|
||
|
Input shape:
|
||
|
5D tensor with shape:
|
||
|
- If `data_format` is `"channels_last"`:
|
||
|
`(batch_size, first_axis_to_crop, second_axis_to_crop,
|
||
|
third_axis_to_crop, depth)`
|
||
|
- If `data_format` is `"channels_first"`:
|
||
|
`(batch_size, depth, first_axis_to_crop, second_axis_to_crop,
|
||
|
third_axis_to_crop)`
|
||
|
|
||
|
Output shape:
|
||
|
5D tensor with shape:
|
||
|
- If `data_format` is `"channels_last"`:
|
||
|
`(batch_size, first_cropped_axis, second_cropped_axis,
|
||
|
third_cropped_axis, depth)`
|
||
|
- If `data_format` is `"channels_first"`:
|
||
|
`(batch_size, depth, first_cropped_axis, second_cropped_axis,
|
||
|
third_cropped_axis)`
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self, cropping=((1, 1), (1, 1), (1, 1)), data_format=None, **kwargs
|
||
|
):
|
||
|
super().__init__(**kwargs)
|
||
|
self.data_format = conv_utils.normalize_data_format(data_format)
|
||
|
if isinstance(cropping, int):
|
||
|
self.cropping = (
|
||
|
(cropping, cropping),
|
||
|
(cropping, cropping),
|
||
|
(cropping, cropping),
|
||
|
)
|
||
|
elif hasattr(cropping, "__len__"):
|
||
|
if len(cropping) != 3:
|
||
|
raise ValueError(
|
||
|
f"`cropping` should have 3 elements. Received: {cropping}."
|
||
|
)
|
||
|
dim1_cropping = conv_utils.normalize_tuple(
|
||
|
cropping[0], 2, "1st entry of cropping", allow_zero=True
|
||
|
)
|
||
|
dim2_cropping = conv_utils.normalize_tuple(
|
||
|
cropping[1], 2, "2nd entry of cropping", allow_zero=True
|
||
|
)
|
||
|
dim3_cropping = conv_utils.normalize_tuple(
|
||
|
cropping[2], 2, "3rd entry of cropping", allow_zero=True
|
||
|
)
|
||
|
self.cropping = (dim1_cropping, dim2_cropping, dim3_cropping)
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"`cropping` should be either an int, "
|
||
|
"a tuple of 3 ints "
|
||
|
"(symmetric_dim1_crop, symmetric_dim2_crop, "
|
||
|
"symmetric_dim3_crop), "
|
||
|
"or a tuple of 3 tuples of 2 ints "
|
||
|
"((left_dim1_crop, right_dim1_crop),"
|
||
|
" (left_dim2_crop, right_dim2_crop),"
|
||
|
" (left_dim3_crop, right_dim2_crop)). "
|
||
|
f"Received: {cropping}."
|
||
|
)
|
||
|
self.input_spec = InputSpec(ndim=5)
|
||
|
|
||
|
def compute_output_shape(self, input_shape):
|
||
|
input_shape = tf.TensorShape(input_shape).as_list()
|
||
|
|
||
|
if self.data_format == "channels_first":
|
||
|
if input_shape[2] is not None:
|
||
|
dim1 = (
|
||
|
input_shape[2] - self.cropping[0][0] - self.cropping[0][1]
|
||
|
)
|
||
|
else:
|
||
|
dim1 = None
|
||
|
if input_shape[3] is not None:
|
||
|
dim2 = (
|
||
|
input_shape[3] - self.cropping[1][0] - self.cropping[1][1]
|
||
|
)
|
||
|
else:
|
||
|
dim2 = None
|
||
|
if input_shape[4] is not None:
|
||
|
dim3 = (
|
||
|
input_shape[4] - self.cropping[2][0] - self.cropping[2][1]
|
||
|
)
|
||
|
else:
|
||
|
dim3 = None
|
||
|
return tf.TensorShape(
|
||
|
[input_shape[0], input_shape[1], dim1, dim2, dim3]
|
||
|
)
|
||
|
elif self.data_format == "channels_last":
|
||
|
if input_shape[1] is not None:
|
||
|
dim1 = (
|
||
|
input_shape[1] - self.cropping[0][0] - self.cropping[0][1]
|
||
|
)
|
||
|
else:
|
||
|
dim1 = None
|
||
|
if input_shape[2] is not None:
|
||
|
dim2 = (
|
||
|
input_shape[2] - self.cropping[1][0] - self.cropping[1][1]
|
||
|
)
|
||
|
else:
|
||
|
dim2 = None
|
||
|
if input_shape[3] is not None:
|
||
|
dim3 = (
|
||
|
input_shape[3] - self.cropping[2][0] - self.cropping[2][1]
|
||
|
)
|
||
|
else:
|
||
|
dim3 = None
|
||
|
return tf.TensorShape(
|
||
|
[input_shape[0], dim1, dim2, dim3, input_shape[4]]
|
||
|
)
|
||
|
|
||
|
def call(self, inputs):
|
||
|
|
||
|
if self.data_format == "channels_first":
|
||
|
if (
|
||
|
self.cropping[0][1]
|
||
|
== self.cropping[1][1]
|
||
|
== self.cropping[2][1]
|
||
|
== 0
|
||
|
):
|
||
|
return inputs[
|
||
|
:,
|
||
|
:,
|
||
|
self.cropping[0][0] :,
|
||
|
self.cropping[1][0] :,
|
||
|
self.cropping[2][0] :,
|
||
|
]
|
||
|
elif self.cropping[0][1] == self.cropping[1][1] == 0:
|
||
|
return inputs[
|
||
|
:,
|
||
|
:,
|
||
|
self.cropping[0][0] :,
|
||
|
self.cropping[1][0] :,
|
||
|
self.cropping[2][0] : -self.cropping[2][1],
|
||
|
]
|
||
|
elif self.cropping[1][1] == self.cropping[2][1] == 0:
|
||
|
return inputs[
|
||
|
:,
|
||
|
:,
|
||
|
self.cropping[0][0] : -self.cropping[0][1],
|
||
|
self.cropping[1][0] :,
|
||
|
self.cropping[2][0] :,
|
||
|
]
|
||
|
elif self.cropping[0][1] == self.cropping[2][1] == 0:
|
||
|
return inputs[
|
||
|
:,
|
||
|
:,
|
||
|
self.cropping[0][0] :,
|
||
|
self.cropping[1][0] : -self.cropping[1][1],
|
||
|
self.cropping[2][0] :,
|
||
|
]
|
||
|
elif self.cropping[0][1] == 0:
|
||
|
return inputs[
|
||
|
:,
|
||
|
:,
|
||
|
self.cropping[0][0] :,
|
||
|
self.cropping[1][0] : -self.cropping[1][1],
|
||
|
self.cropping[2][0] : -self.cropping[2][1],
|
||
|
]
|
||
|
elif self.cropping[1][1] == 0:
|
||
|
return inputs[
|
||
|
:,
|
||
|
:,
|
||
|
self.cropping[0][0] : -self.cropping[0][1],
|
||
|
self.cropping[1][0] :,
|
||
|
self.cropping[2][0] : -self.cropping[2][1],
|
||
|
]
|
||
|
elif self.cropping[2][1] == 0:
|
||
|
return inputs[
|
||
|
:,
|
||
|
:,
|
||
|
self.cropping[0][0] : -self.cropping[0][1],
|
||
|
self.cropping[1][0] : -self.cropping[1][1],
|
||
|
self.cropping[2][0] :,
|
||
|
]
|
||
|
return inputs[
|
||
|
:,
|
||
|
:,
|
||
|
self.cropping[0][0] : -self.cropping[0][1],
|
||
|
self.cropping[1][0] : -self.cropping[1][1],
|
||
|
self.cropping[2][0] : -self.cropping[2][1],
|
||
|
]
|
||
|
else:
|
||
|
if (
|
||
|
self.cropping[0][1]
|
||
|
== self.cropping[1][1]
|
||
|
== self.cropping[2][1]
|
||
|
== 0
|
||
|
):
|
||
|
return inputs[
|
||
|
:,
|
||
|
self.cropping[0][0] :,
|
||
|
self.cropping[1][0] :,
|
||
|
self.cropping[2][0] :,
|
||
|
:,
|
||
|
]
|
||
|
elif self.cropping[0][1] == self.cropping[1][1] == 0:
|
||
|
return inputs[
|
||
|
:,
|
||
|
self.cropping[0][0] :,
|
||
|
self.cropping[1][0] :,
|
||
|
self.cropping[2][0] : -self.cropping[2][1],
|
||
|
:,
|
||
|
]
|
||
|
elif self.cropping[1][1] == self.cropping[2][1] == 0:
|
||
|
return inputs[
|
||
|
:,
|
||
|
self.cropping[0][0] : -self.cropping[0][1],
|
||
|
self.cropping[1][0] :,
|
||
|
self.cropping[2][0] :,
|
||
|
:,
|
||
|
]
|
||
|
elif self.cropping[0][1] == self.cropping[2][1] == 0:
|
||
|
return inputs[
|
||
|
:,
|
||
|
self.cropping[0][0] :,
|
||
|
self.cropping[1][0] : -self.cropping[1][1],
|
||
|
self.cropping[2][0] :,
|
||
|
:,
|
||
|
]
|
||
|
elif self.cropping[0][1] == 0:
|
||
|
return inputs[
|
||
|
:,
|
||
|
self.cropping[0][0] :,
|
||
|
self.cropping[1][0] : -self.cropping[1][1],
|
||
|
self.cropping[2][0] : -self.cropping[2][1],
|
||
|
:,
|
||
|
]
|
||
|
elif self.cropping[1][1] == 0:
|
||
|
return inputs[
|
||
|
:,
|
||
|
self.cropping[0][0] : -self.cropping[0][1],
|
||
|
self.cropping[1][0] :,
|
||
|
self.cropping[2][0] : -self.cropping[2][1],
|
||
|
:,
|
||
|
]
|
||
|
elif self.cropping[2][1] == 0:
|
||
|
return inputs[
|
||
|
:,
|
||
|
self.cropping[0][0] : -self.cropping[0][1],
|
||
|
self.cropping[1][0] : -self.cropping[1][1],
|
||
|
self.cropping[2][0] :,
|
||
|
:,
|
||
|
]
|
||
|
return inputs[
|
||
|
:,
|
||
|
self.cropping[0][0] : -self.cropping[0][1],
|
||
|
self.cropping[1][0] : -self.cropping[1][1],
|
||
|
self.cropping[2][0] : -self.cropping[2][1],
|
||
|
:,
|
||
|
]
|
||
|
|
||
|
def get_config(self):
|
||
|
config = {"cropping": self.cropping, "data_format": self.data_format}
|
||
|
base_config = super().get_config()
|
||
|
return dict(list(base_config.items()) + list(config.items()))
|