131 lines
4.6 KiB
Python
131 lines
4.6 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""Keras upsampling layer for 3D inputs."""
|
||
|
|
||
|
|
||
|
import tensorflow.compat.v2 as tf
|
||
|
|
||
|
from keras import backend
|
||
|
from keras.engine.base_layer import Layer
|
||
|
from keras.engine.input_spec import InputSpec
|
||
|
from keras.utils import conv_utils
|
||
|
|
||
|
# isort: off
|
||
|
from tensorflow.python.util.tf_export import keras_export
|
||
|
|
||
|
|
||
|
@keras_export("keras.layers.UpSampling3D")
|
||
|
class UpSampling3D(Layer):
|
||
|
"""Upsampling layer for 3D inputs.
|
||
|
|
||
|
Repeats the 1st, 2nd and 3rd dimensions
|
||
|
of the data by `size[0]`, `size[1]` and `size[2]` respectively.
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
>>> input_shape = (2, 1, 2, 1, 3)
|
||
|
>>> x = tf.constant(1, shape=input_shape)
|
||
|
>>> y = tf.keras.layers.UpSampling3D(size=2)(x)
|
||
|
>>> print(y.shape)
|
||
|
(2, 2, 4, 2, 3)
|
||
|
|
||
|
Args:
|
||
|
size: Int, or tuple of 3 integers.
|
||
|
The upsampling factors for dim1, dim2 and dim3.
|
||
|
data_format: A string,
|
||
|
one of `channels_last` (default) or `channels_first`.
|
||
|
The ordering of the dimensions in the inputs.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
|
||
|
while `channels_first` corresponds to inputs with shape
|
||
|
`(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)`.
|
||
|
It defaults to the `image_data_format` value found in your
|
||
|
Keras config file at `~/.keras/keras.json`.
|
||
|
If you never set it, then it will be "channels_last".
|
||
|
|
||
|
Input shape:
|
||
|
5D tensor with shape:
|
||
|
- If `data_format` is `"channels_last"`:
|
||
|
`(batch_size, dim1, dim2, dim3, channels)`
|
||
|
- If `data_format` is `"channels_first"`:
|
||
|
`(batch_size, channels, dim1, dim2, dim3)`
|
||
|
|
||
|
Output shape:
|
||
|
5D tensor with shape:
|
||
|
- If `data_format` is `"channels_last"`:
|
||
|
`(batch_size, upsampled_dim1, upsampled_dim2, upsampled_dim3,
|
||
|
channels)`
|
||
|
- If `data_format` is `"channels_first"`:
|
||
|
`(batch_size, channels, upsampled_dim1, upsampled_dim2,
|
||
|
upsampled_dim3)`
|
||
|
"""
|
||
|
|
||
|
def __init__(self, size=(2, 2, 2), data_format=None, **kwargs):
|
||
|
self.data_format = conv_utils.normalize_data_format(data_format)
|
||
|
self.size = conv_utils.normalize_tuple(size, 3, "size")
|
||
|
self.input_spec = InputSpec(ndim=5)
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
def compute_output_shape(self, input_shape):
|
||
|
input_shape = tf.TensorShape(input_shape).as_list()
|
||
|
if self.data_format == "channels_first":
|
||
|
dim1 = (
|
||
|
self.size[0] * input_shape[2]
|
||
|
if input_shape[2] is not None
|
||
|
else None
|
||
|
)
|
||
|
dim2 = (
|
||
|
self.size[1] * input_shape[3]
|
||
|
if input_shape[3] is not None
|
||
|
else None
|
||
|
)
|
||
|
dim3 = (
|
||
|
self.size[2] * input_shape[4]
|
||
|
if input_shape[4] is not None
|
||
|
else None
|
||
|
)
|
||
|
return tf.TensorShape(
|
||
|
[input_shape[0], input_shape[1], dim1, dim2, dim3]
|
||
|
)
|
||
|
else:
|
||
|
dim1 = (
|
||
|
self.size[0] * input_shape[1]
|
||
|
if input_shape[1] is not None
|
||
|
else None
|
||
|
)
|
||
|
dim2 = (
|
||
|
self.size[1] * input_shape[2]
|
||
|
if input_shape[2] is not None
|
||
|
else None
|
||
|
)
|
||
|
dim3 = (
|
||
|
self.size[2] * input_shape[3]
|
||
|
if input_shape[3] is not None
|
||
|
else None
|
||
|
)
|
||
|
return tf.TensorShape(
|
||
|
[input_shape[0], dim1, dim2, dim3, input_shape[4]]
|
||
|
)
|
||
|
|
||
|
def call(self, inputs):
|
||
|
return backend.resize_volumes(
|
||
|
inputs, self.size[0], self.size[1], self.size[2], self.data_format
|
||
|
)
|
||
|
|
||
|
def get_config(self):
|
||
|
config = {"size": self.size, "data_format": self.data_format}
|
||
|
base_config = super().get_config()
|
||
|
return dict(list(base_config.items()) + list(config.items()))
|