Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/layers/reshaping/up_sampling3d.py

131 lines
4.6 KiB
Python
Raw Normal View History

2023-06-19 00:49:18 +02:00
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras upsampling layer for 3D inputs."""
import tensorflow.compat.v2 as tf
from keras import backend
from keras.engine.base_layer import Layer
from keras.engine.input_spec import InputSpec
from keras.utils import conv_utils
# isort: off
from tensorflow.python.util.tf_export import keras_export
@keras_export("keras.layers.UpSampling3D")
class UpSampling3D(Layer):
"""Upsampling layer for 3D inputs.
Repeats the 1st, 2nd and 3rd dimensions
of the data by `size[0]`, `size[1]` and `size[2]` respectively.
Examples:
>>> input_shape = (2, 1, 2, 1, 3)
>>> x = tf.constant(1, shape=input_shape)
>>> y = tf.keras.layers.UpSampling3D(size=2)(x)
>>> print(y.shape)
(2, 2, 4, 2, 3)
Args:
size: Int, or tuple of 3 integers.
The upsampling factors for dim1, dim2 and dim3.
data_format: A string,
one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
while `channels_first` corresponds to inputs with shape
`(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
Input shape:
5D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch_size, dim1, dim2, dim3, channels)`
- If `data_format` is `"channels_first"`:
`(batch_size, channels, dim1, dim2, dim3)`
Output shape:
5D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch_size, upsampled_dim1, upsampled_dim2, upsampled_dim3,
channels)`
- If `data_format` is `"channels_first"`:
`(batch_size, channels, upsampled_dim1, upsampled_dim2,
upsampled_dim3)`
"""
def __init__(self, size=(2, 2, 2), data_format=None, **kwargs):
self.data_format = conv_utils.normalize_data_format(data_format)
self.size = conv_utils.normalize_tuple(size, 3, "size")
self.input_spec = InputSpec(ndim=5)
super().__init__(**kwargs)
def compute_output_shape(self, input_shape):
input_shape = tf.TensorShape(input_shape).as_list()
if self.data_format == "channels_first":
dim1 = (
self.size[0] * input_shape[2]
if input_shape[2] is not None
else None
)
dim2 = (
self.size[1] * input_shape[3]
if input_shape[3] is not None
else None
)
dim3 = (
self.size[2] * input_shape[4]
if input_shape[4] is not None
else None
)
return tf.TensorShape(
[input_shape[0], input_shape[1], dim1, dim2, dim3]
)
else:
dim1 = (
self.size[0] * input_shape[1]
if input_shape[1] is not None
else None
)
dim2 = (
self.size[1] * input_shape[2]
if input_shape[2] is not None
else None
)
dim3 = (
self.size[2] * input_shape[3]
if input_shape[3] is not None
else None
)
return tf.TensorShape(
[input_shape[0], dim1, dim2, dim3, input_shape[4]]
)
def call(self, inputs):
return backend.resize_volumes(
inputs, self.size[0], self.size[1], self.size[2], self.data_format
)
def get_config(self):
config = {"size": self.size, "data_format": self.data_format}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))