258 lines
9.5 KiB
Python
258 lines
9.5 KiB
Python
|
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""FTRL optimizer implementation."""
|
||
|
|
||
|
import tensorflow.compat.v2 as tf
|
||
|
|
||
|
from keras.optimizers import optimizer
|
||
|
from keras.saving.object_registration import register_keras_serializable
|
||
|
|
||
|
# isort: off
|
||
|
from tensorflow.python.util.tf_export import keras_export
|
||
|
|
||
|
|
||
|
@register_keras_serializable()
|
||
|
@keras_export(
|
||
|
"keras.optimizers.experimental.Ftrl", "keras.optimizers.Ftrl", v1=[]
|
||
|
)
|
||
|
class Ftrl(optimizer.Optimizer):
|
||
|
r"""Optimizer that implements the FTRL algorithm.
|
||
|
|
||
|
"Follow The Regularized Leader" (FTRL) is an optimization algorithm
|
||
|
developed at Google for click-through rate prediction in the early 2010s. It
|
||
|
is most suitable for shallow models with large and sparse feature spaces.
|
||
|
The algorithm is described by
|
||
|
[McMahan et al., 2013](https://research.google.com/pubs/archive/41159.pdf).
|
||
|
The Keras version has support for both online L2 regularization
|
||
|
(the L2 regularization described in the paper
|
||
|
above) and shrinkage-type L2 regularization
|
||
|
(which is the addition of an L2 penalty to the loss function).
|
||
|
|
||
|
Initialization:
|
||
|
|
||
|
```python
|
||
|
n = 0
|
||
|
sigma = 0
|
||
|
z = 0
|
||
|
```
|
||
|
|
||
|
Update rule for one variable `w`:
|
||
|
|
||
|
```python
|
||
|
prev_n = n
|
||
|
n = n + g ** 2
|
||
|
sigma = (n ** -lr_power - prev_n ** -lr_power) / lr
|
||
|
z = z + g - sigma * w
|
||
|
if abs(z) < lambda_1:
|
||
|
w = 0
|
||
|
else:
|
||
|
w = (sgn(z) * lambda_1 - z) / ((beta + sqrt(n)) / alpha + lambda_2)
|
||
|
```
|
||
|
|
||
|
Notation:
|
||
|
|
||
|
- `lr` is the learning rate
|
||
|
- `g` is the gradient for the variable
|
||
|
- `lambda_1` is the L1 regularization strength
|
||
|
- `lambda_2` is the L2 regularization strength
|
||
|
- `lr_power` is the power to scale n.
|
||
|
|
||
|
Check the documentation for the `l2_shrinkage_regularization_strength`
|
||
|
parameter for more details when shrinkage is enabled, in which case gradient
|
||
|
is replaced with a gradient with shrinkage.
|
||
|
|
||
|
Args:
|
||
|
learning_rate: A `Tensor`, floating point value, a schedule that is a
|
||
|
`tf.keras.optimizers.schedules.LearningRateSchedule`, or a callable that
|
||
|
takes no arguments and returns the actual value to use. The learning
|
||
|
rate. Defaults to 0.001.
|
||
|
learning_rate_power: A float value, must be less or equal to zero.
|
||
|
Controls how the learning rate decreases during training. Use zero for a
|
||
|
fixed learning rate.
|
||
|
initial_accumulator_value: The starting value for accumulators. Only zero
|
||
|
or positive values are allowed.
|
||
|
l1_regularization_strength: A float value, must be greater than or equal
|
||
|
to zero. Defaults to 0.0.
|
||
|
l2_regularization_strength: A float value, must be greater than or equal
|
||
|
to zero. Defaults to 0.0.
|
||
|
l2_shrinkage_regularization_strength: A float value, must be greater than
|
||
|
or equal to zero. This differs from L2 above in that the L2 above is a
|
||
|
stabilization penalty, whereas this L2 shrinkage is a magnitude penalty.
|
||
|
When input is sparse shrinkage will only happen on the active weights.
|
||
|
beta: A float value, representing the beta value from the paper. Defaults
|
||
|
to 0.0.
|
||
|
{{base_optimizer_keyword_args}}
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
learning_rate=0.001,
|
||
|
learning_rate_power=-0.5,
|
||
|
initial_accumulator_value=0.1,
|
||
|
l1_regularization_strength=0.0,
|
||
|
l2_regularization_strength=0.0,
|
||
|
l2_shrinkage_regularization_strength=0.0,
|
||
|
beta=0.0,
|
||
|
weight_decay=None,
|
||
|
clipnorm=None,
|
||
|
clipvalue=None,
|
||
|
global_clipnorm=None,
|
||
|
use_ema=False,
|
||
|
ema_momentum=0.99,
|
||
|
ema_overwrite_frequency=None,
|
||
|
jit_compile=True,
|
||
|
name="Ftrl",
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(
|
||
|
name=name,
|
||
|
weight_decay=weight_decay,
|
||
|
clipnorm=clipnorm,
|
||
|
clipvalue=clipvalue,
|
||
|
global_clipnorm=global_clipnorm,
|
||
|
use_ema=use_ema,
|
||
|
ema_momentum=ema_momentum,
|
||
|
ema_overwrite_frequency=ema_overwrite_frequency,
|
||
|
jit_compile=jit_compile,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
if initial_accumulator_value < 0.0:
|
||
|
raise ValueError(
|
||
|
"`initial_accumulator_value` needs to be positive or zero. "
|
||
|
"Received: initial_accumulator_value="
|
||
|
f"{initial_accumulator_value}."
|
||
|
)
|
||
|
if learning_rate_power > 0.0:
|
||
|
raise ValueError(
|
||
|
"`learning_rate_power` needs to be negative or zero. Received: "
|
||
|
f"learning_rate_power={learning_rate_power}."
|
||
|
)
|
||
|
if l1_regularization_strength < 0.0:
|
||
|
raise ValueError(
|
||
|
"`l1_regularization_strength` needs to be positive or zero. "
|
||
|
"Received: l1_regularization_strength="
|
||
|
f"{l1_regularization_strength}."
|
||
|
)
|
||
|
if l2_regularization_strength < 0.0:
|
||
|
raise ValueError(
|
||
|
"`l2_regularization_strength` needs to be positive or zero. "
|
||
|
"Received: l2_regularization_strength="
|
||
|
f"{l2_regularization_strength}."
|
||
|
)
|
||
|
if l2_shrinkage_regularization_strength < 0.0:
|
||
|
raise ValueError(
|
||
|
"`l2_shrinkage_regularization_strength` needs to be positive "
|
||
|
"or zero. Received: l2_shrinkage_regularization_strength"
|
||
|
f"={l2_shrinkage_regularization_strength}."
|
||
|
)
|
||
|
|
||
|
self._learning_rate = self._build_learning_rate(learning_rate)
|
||
|
self.learning_rate_power = learning_rate_power
|
||
|
self.initial_accumulator_value = initial_accumulator_value
|
||
|
self.l1_regularization_strength = l1_regularization_strength
|
||
|
self.l2_regularization_strength = l2_regularization_strength
|
||
|
self.l2_shrinkage_regularization_strength = (
|
||
|
l2_shrinkage_regularization_strength
|
||
|
)
|
||
|
self.beta = beta
|
||
|
|
||
|
def build(self, var_list):
|
||
|
"""Initialize optimizer variables.
|
||
|
|
||
|
Args:
|
||
|
var_list: list of model variables to build Ftrl variables on.
|
||
|
"""
|
||
|
super().build(var_list)
|
||
|
if hasattr(self, "_built") and self._built:
|
||
|
return
|
||
|
self._accumulators = []
|
||
|
self._linears = []
|
||
|
for var in var_list:
|
||
|
self._accumulators.append(
|
||
|
self.add_variable_from_reference(
|
||
|
model_variable=var,
|
||
|
variable_name="accumulator",
|
||
|
initial_value=tf.cast(
|
||
|
tf.fill(
|
||
|
dims=var.shape, value=self.initial_accumulator_value
|
||
|
),
|
||
|
dtype=var.dtype,
|
||
|
),
|
||
|
)
|
||
|
)
|
||
|
self._linears.append(
|
||
|
self.add_variable_from_reference(
|
||
|
model_variable=var, variable_name="linear"
|
||
|
)
|
||
|
)
|
||
|
self._built = True
|
||
|
|
||
|
def update_step(self, gradient, variable):
|
||
|
"""Update step given gradient and the associated model variable."""
|
||
|
|
||
|
lr = tf.cast(self.learning_rate, variable.dtype)
|
||
|
var_key = self._var_key(variable)
|
||
|
accum = self._accumulators[self._index_dict[var_key]]
|
||
|
linear = self._linears[self._index_dict[var_key]]
|
||
|
|
||
|
lr_power = self.learning_rate_power
|
||
|
l2_reg = self.l2_regularization_strength
|
||
|
l2_reg = l2_reg + self.beta / (2.0 * lr)
|
||
|
|
||
|
# Ftrl optimizer has the same implementation for sparse and dense
|
||
|
# gradients update.
|
||
|
grad_to_use = (
|
||
|
gradient + 2 * self.l2_shrinkage_regularization_strength * variable
|
||
|
)
|
||
|
new_accum = accum + tf.pow(gradient, 2)
|
||
|
linear.assign_add(
|
||
|
grad_to_use
|
||
|
- (tf.pow(new_accum, -lr_power) - tf.pow(accum, -lr_power))
|
||
|
/ lr
|
||
|
* variable
|
||
|
)
|
||
|
quadratic = tf.pow(new_accum, (-lr_power)) / lr + 2 * l2_reg
|
||
|
linear_clipped = tf.clip_by_value(
|
||
|
linear,
|
||
|
-self.l1_regularization_strength,
|
||
|
self.l1_regularization_strength,
|
||
|
)
|
||
|
variable.assign((linear_clipped - linear) / quadratic)
|
||
|
accum.assign(new_accum)
|
||
|
|
||
|
def get_config(self):
|
||
|
config = super().get_config()
|
||
|
|
||
|
config.update(
|
||
|
{
|
||
|
"learning_rate": self._serialize_hyperparameter(
|
||
|
self._learning_rate
|
||
|
),
|
||
|
"learning_rate_power": self.learning_rate_power,
|
||
|
"initial_accumulator_value": self.initial_accumulator_value,
|
||
|
"l1_regularization_strength": self.l1_regularization_strength,
|
||
|
"l2_regularization_strength": self.l2_regularization_strength,
|
||
|
"l2_shrinkage_regularization_strength": self.l2_shrinkage_regularization_strength, # noqa: E501
|
||
|
"beta": self.beta,
|
||
|
}
|
||
|
)
|
||
|
return config
|
||
|
|
||
|
|
||
|
Ftrl.__doc__ = Ftrl.__doc__.replace(
|
||
|
"{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args
|
||
|
)
|