Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/optimizers/legacy/ftrl.py

310 lines
12 KiB
Python
Raw Normal View History

2023-06-19 00:49:18 +02:00
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Ftrl-proximal optimizer implementation."""
import tensorflow.compat.v2 as tf
from keras.optimizers.legacy import optimizer_v2
# isort: off
from tensorflow.python.util.tf_export import keras_export
@keras_export(
"keras.optimizers.legacy.Ftrl",
v1=["keras.optimizers.Ftrl", "keras.optimizers.legacy.Ftrl"],
)
class Ftrl(optimizer_v2.OptimizerV2):
r"""Optimizer that implements the FTRL algorithm.
"Follow The Regularized Leader" (FTRL) is an optimization algorithm
developed at Google for click-through rate prediction in the early 2010s. It
is most suitable for shallow models with large and sparse feature spaces.
The algorithm is described by
[McMahan et al., 2013](https://research.google.com/pubs/archive/41159.pdf).
The Keras version has support for both online L2 regularization
(the L2 regularization described in the paper
above) and shrinkage-type L2 regularization
(which is the addition of an L2 penalty to the loss function).
Initialization:
```python
n = 0
sigma = 0
z = 0
```
Update rule for one variable `w`:
```python
prev_n = n
n = n + g ** 2
sigma = (sqrt(n) - sqrt(prev_n)) / lr
z = z + g - sigma * w
if abs(z) < lambda_1:
w = 0
else:
w = (sgn(z) * lambda_1 - z) / ((beta + sqrt(n)) / alpha + lambda_2)
```
Notation:
- `lr` is the learning rate
- `g` is the gradient for the variable
- `lambda_1` is the L1 regularization strength
- `lambda_2` is the L2 regularization strength
Check the documentation for the `l2_shrinkage_regularization_strength`
parameter for more details when shrinkage is enabled, in which case gradient
is replaced with a gradient with shrinkage.
Args:
learning_rate: A `Tensor`, floating point value, or a schedule that is a
`tf.keras.optimizers.schedules.LearningRateSchedule`. The learning rate.
learning_rate_power: A float value, must be less or equal to zero.
Controls how the learning rate decreases during training. Use zero for
a fixed learning rate.
initial_accumulator_value: The starting value for accumulators.
Only zero or positive values are allowed.
l1_regularization_strength: A float value, must be greater than or
equal to zero. Defaults to 0.0.
l2_regularization_strength: A float value, must be greater than or
equal to zero. Defaults to 0.0.
name: Optional name prefix for the operations created when applying
gradients. Defaults to `"Ftrl"`.
l2_shrinkage_regularization_strength: A float value, must be greater than
or equal to zero. This differs from L2 above in that the L2 above is a
stabilization penalty, whereas this L2 shrinkage is a magnitude penalty.
When input is sparse shrinkage will only happen on the active weights.
beta: A float value, representing the beta value from the paper.
Defaults to 0.0.
**kwargs: keyword arguments. Allowed arguments are `clipvalue`,
`clipnorm`, `global_clipnorm`.
If `clipvalue` (float) is set, the gradient of each weight
is clipped to be no higher than this value.
If `clipnorm` (float) is set, the gradient of each weight
is individually clipped so that its norm is no higher than this value.
If `global_clipnorm` (float) is set the gradient of all weights is
clipped so that their global norm is no higher than this value.
Reference:
- [McMahan et al., 2013](
https://research.google.com/pubs/archive/41159.pdf)
"""
def __init__(
self,
learning_rate=0.001,
learning_rate_power=-0.5,
initial_accumulator_value=0.1,
l1_regularization_strength=0.0,
l2_regularization_strength=0.0,
name="Ftrl",
l2_shrinkage_regularization_strength=0.0,
beta=0.0,
**kwargs,
):
super().__init__(name, **kwargs)
if initial_accumulator_value < 0.0:
raise ValueError(
"`initial_accumulator_value` needs to be "
"positive or zero. Received: "
f"initial_accumulator_value={initial_accumulator_value}."
)
if learning_rate_power > 0.0:
raise ValueError(
"`learning_rate_power` needs to be "
"negative or zero. Received: "
f"learning_rate_power={learning_rate_power}."
)
if l1_regularization_strength < 0.0:
raise ValueError(
"`l1_regularization_strength` needs to be positive or zero. "
"Received: l1_regularization_strength="
f"{l1_regularization_strength}."
)
if l2_regularization_strength < 0.0:
raise ValueError(
"`l2_regularization_strength` needs to be positive or zero. "
"Received: l2_regularization_strength="
f"{l2_regularization_strength}."
)
if l2_shrinkage_regularization_strength < 0.0:
raise ValueError(
"`l2_shrinkage_regularization_strength` needs to be positive "
"or zero. Received: l2_shrinkage_regularization_strength"
f"={l2_shrinkage_regularization_strength}."
)
self._set_hyper("learning_rate", learning_rate)
self._set_hyper("decay", self._initial_decay)
self._set_hyper("learning_rate_power", learning_rate_power)
self._set_hyper(
"l1_regularization_strength", l1_regularization_strength
)
self._set_hyper(
"l2_regularization_strength", l2_regularization_strength
)
self._set_hyper("beta", beta)
self._initial_accumulator_value = initial_accumulator_value
self._l2_shrinkage_regularization_strength = (
l2_shrinkage_regularization_strength
)
def _create_slots(self, var_list):
# Create the "accum" and "linear" slots.
for var in var_list:
dtype = var.dtype.base_dtype
init = tf.compat.v1.constant_initializer(
self._initial_accumulator_value, dtype=dtype
)
self.add_slot(var, "accumulator", init)
self.add_slot(var, "linear")
def _prepare_local(self, var_device, var_dtype, apply_state):
super()._prepare_local(var_device, var_dtype, apply_state)
apply_state[(var_device, var_dtype)].update(
dict(
learning_rate_power=tf.identity(
self._get_hyper("learning_rate_power", var_dtype)
),
l1_regularization_strength=tf.identity(
self._get_hyper("l1_regularization_strength", var_dtype)
),
l2_regularization_strength=tf.identity(
self._get_hyper("l2_regularization_strength", var_dtype)
),
beta=tf.identity(self._get_hyper("beta", var_dtype)),
l2_shrinkage_regularization_strength=tf.cast(
self._l2_shrinkage_regularization_strength, var_dtype
),
)
)
def _resource_apply_dense(self, grad, var, apply_state=None):
var_device, var_dtype = var.device, var.dtype.base_dtype
coefficients = (apply_state or {}).get(
(var_device, var_dtype)
) or self._fallback_apply_state(var_device, var_dtype)
# Adjust L2 regularization strength to include beta to avoid the
# underlying TensorFlow ops needing to include it.
adjusted_l2_regularization_strength = coefficients[
"l2_regularization_strength"
] + coefficients["beta"] / (2.0 * coefficients["lr_t"])
accum = self.get_slot(var, "accumulator")
linear = self.get_slot(var, "linear")
if self._l2_shrinkage_regularization_strength <= 0.0:
return tf.raw_ops.ResourceApplyFtrl(
var=var.handle,
accum=accum.handle,
linear=linear.handle,
grad=grad,
lr=coefficients["lr_t"],
l1=coefficients["l1_regularization_strength"],
l2=adjusted_l2_regularization_strength,
lr_power=coefficients["learning_rate_power"],
use_locking=self._use_locking,
)
else:
return tf.raw_ops.ResourceApplyFtrlV2(
var=var.handle,
accum=accum.handle,
linear=linear.handle,
grad=grad,
lr=coefficients["lr_t"],
l1=coefficients["l1_regularization_strength"],
l2=adjusted_l2_regularization_strength,
l2_shrinkage=coefficients[
"l2_shrinkage_regularization_strength"
],
lr_power=coefficients["learning_rate_power"],
use_locking=self._use_locking,
)
def _resource_apply_sparse(self, grad, var, indices, apply_state=None):
var_device, var_dtype = var.device, var.dtype.base_dtype
coefficients = (apply_state or {}).get(
(var_device, var_dtype)
) or self._fallback_apply_state(var_device, var_dtype)
# Adjust L2 regularization strength to include beta to avoid the
# underlying TensorFlow ops needing to include it.
adjusted_l2_regularization_strength = coefficients[
"l2_regularization_strength"
] + coefficients["beta"] / (2.0 * coefficients["lr_t"])
accum = self.get_slot(var, "accumulator")
linear = self.get_slot(var, "linear")
if self._l2_shrinkage_regularization_strength <= 0.0:
return tf.raw_ops.ResourceSparseApplyFtrl(
var=var.handle,
accum=accum.handle,
linear=linear.handle,
grad=grad,
indices=indices,
lr=coefficients["lr_t"],
l1=coefficients["l1_regularization_strength"],
l2=adjusted_l2_regularization_strength,
lr_power=coefficients["learning_rate_power"],
use_locking=self._use_locking,
)
else:
return tf.raw_ops.ResourceSparseApplyFtrlV2(
var=var.handle,
accum=accum.handle,
linear=linear.handle,
grad=grad,
indices=indices,
lr=coefficients["lr_t"],
l1=coefficients["l1_regularization_strength"],
l2=adjusted_l2_regularization_strength,
l2_shrinkage=coefficients[
"l2_shrinkage_regularization_strength"
],
lr_power=coefficients["learning_rate_power"],
use_locking=self._use_locking,
)
def get_config(self):
config = super().get_config()
config.update(
{
"learning_rate": self._serialize_hyperparameter(
"learning_rate"
),
"decay": self._initial_decay,
"initial_accumulator_value": self._initial_accumulator_value,
"learning_rate_power": self._serialize_hyperparameter(
"learning_rate_power"
),
"l1_regularization_strength": self._serialize_hyperparameter(
"l1_regularization_strength"
),
"l2_regularization_strength": self._serialize_hyperparameter(
"l2_regularization_strength"
),
"beta": self._serialize_hyperparameter("beta"),
"l2_shrinkage_regularization_strength": self._l2_shrinkage_regularization_strength, # noqa: E501
}
)
return config