Intelegentny_Pszczelarz/.venv/Lib/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py

908 lines
36 KiB
Python
Raw Normal View History

2023-06-19 00:49:18 +02:00
import os
import re
import copy
import numpy as np
from numpy.testing import assert_allclose, assert_equal, assert_array_equal
import pytest
from scipy.linalg import svd, null_space
from scipy.sparse import csc_matrix, isspmatrix, spdiags, random
from scipy.sparse.linalg import LinearOperator, aslinearoperator
if os.environ.get("SCIPY_USE_PROPACK"):
has_propack = True
else:
has_propack = False
from scipy.sparse.linalg import svds
from scipy.sparse.linalg._eigen.arpack import ArpackNoConvergence
# --- Helper Functions / Classes ---
def sorted_svd(m, k, which='LM'):
# Compute svd of a dense matrix m, and return singular vectors/values
# sorted.
if isspmatrix(m):
m = m.toarray()
u, s, vh = svd(m)
if which == 'LM':
ii = np.argsort(s)[-k:]
elif which == 'SM':
ii = np.argsort(s)[:k]
else:
raise ValueError("unknown which=%r" % (which,))
return u[:, ii], s[ii], vh[ii]
def svd_estimate(u, s, vh):
return np.dot(u, np.dot(np.diag(s), vh))
def _check_svds(A, k, u, s, vh, which="LM", check_usvh_A=False,
check_svd=True, atol=1e-10, rtol=1e-7):
n, m = A.shape
# Check shapes.
assert_equal(u.shape, (n, k))
assert_equal(s.shape, (k,))
assert_equal(vh.shape, (k, m))
# Check that the original matrix can be reconstituted.
A_rebuilt = (u*s).dot(vh)
assert_equal(A_rebuilt.shape, A.shape)
if check_usvh_A:
assert_allclose(A_rebuilt, A, atol=atol, rtol=rtol)
# Check that u is a semi-orthogonal matrix.
uh_u = np.dot(u.T.conj(), u)
assert_equal(uh_u.shape, (k, k))
assert_allclose(uh_u, np.identity(k), atol=atol, rtol=rtol)
# Check that vh is a semi-orthogonal matrix.
vh_v = np.dot(vh, vh.T.conj())
assert_equal(vh_v.shape, (k, k))
assert_allclose(vh_v, np.identity(k), atol=atol, rtol=rtol)
# Check that scipy.sparse.linalg.svds ~ scipy.linalg.svd
if check_svd:
u2, s2, vh2 = sorted_svd(A, k, which)
assert_allclose(np.abs(u), np.abs(u2), atol=atol, rtol=rtol)
assert_allclose(s, s2, atol=atol, rtol=rtol)
assert_allclose(np.abs(vh), np.abs(vh2), atol=atol, rtol=rtol)
def _check_svds_n(A, k, u, s, vh, which="LM", check_res=True,
check_svd=True, atol=1e-10, rtol=1e-7):
n, m = A.shape
# Check shapes.
assert_equal(u.shape, (n, k))
assert_equal(s.shape, (k,))
assert_equal(vh.shape, (k, m))
# Check that u is a semi-orthogonal matrix.
uh_u = np.dot(u.T.conj(), u)
assert_equal(uh_u.shape, (k, k))
error = np.sum(np.abs(uh_u - np.identity(k))) / (k * k)
assert_allclose(error, 0.0, atol=atol, rtol=rtol)
# Check that vh is a semi-orthogonal matrix.
vh_v = np.dot(vh, vh.T.conj())
assert_equal(vh_v.shape, (k, k))
error = np.sum(np.abs(vh_v - np.identity(k))) / (k * k)
assert_allclose(error, 0.0, atol=atol, rtol=rtol)
# Check residuals
if check_res:
ru = A.T.conj() @ u - vh.T.conj() * s
rus = np.sum(np.abs(ru)) / (n * k)
rvh = A @ vh.T.conj() - u * s
rvhs = np.sum(np.abs(rvh)) / (m * k)
assert_allclose(rus, 0.0, atol=atol, rtol=rtol)
assert_allclose(rvhs, 0.0, atol=atol, rtol=rtol)
# Check that scipy.sparse.linalg.svds ~ scipy.linalg.svd
if check_svd:
u2, s2, vh2 = sorted_svd(A, k, which)
assert_allclose(s, s2, atol=atol, rtol=rtol)
A_rebuilt_svd = (u2*s2).dot(vh2)
A_rebuilt = (u*s).dot(vh)
assert_equal(A_rebuilt.shape, A.shape)
error = np.sum(np.abs(A_rebuilt_svd - A_rebuilt)) / (k * k)
assert_allclose(error, 0.0, atol=atol, rtol=rtol)
class CheckingLinearOperator(LinearOperator):
def __init__(self, A):
self.A = A
self.dtype = A.dtype
self.shape = A.shape
def _matvec(self, x):
assert_equal(max(x.shape), np.size(x))
return self.A.dot(x)
def _rmatvec(self, x):
assert_equal(max(x.shape), np.size(x))
return self.A.T.conjugate().dot(x)
# --- Test Input Validation ---
# Tests input validation on parameters `k` and `which`.
# Needs better input validation checks for all other parameters.
class SVDSCommonTests:
solver = None
# some of these IV tests could run only once, say with solver=None
_A_empty_msg = "`A` must not be empty."
_A_dtype_msg = "`A` must be of floating or complex floating data type"
_A_type_msg = "type not understood"
_A_ndim_msg = "array must have ndim <= 2"
_A_validation_inputs = [
(np.asarray([[]]), ValueError, _A_empty_msg),
(np.asarray([[1, 2], [3, 4]]), ValueError, _A_dtype_msg),
("hi", TypeError, _A_type_msg),
(np.asarray([[[1., 2.], [3., 4.]]]), ValueError, _A_ndim_msg)]
@pytest.mark.parametrize("args", _A_validation_inputs)
def test_svds_input_validation_A(self, args):
A, error_type, message = args
with pytest.raises(error_type, match=message):
svds(A, k=1, solver=self.solver)
@pytest.mark.parametrize("k", [-1, 0, 3, 4, 5, 1.5, "1"])
def test_svds_input_validation_k_1(self, k):
rng = np.random.default_rng(0)
A = rng.random((4, 3))
# propack can do complete SVD
if self.solver == 'propack' and k == 3:
if not has_propack:
pytest.skip("PROPACK not enabled")
res = svds(A, k=k, solver=self.solver)
_check_svds(A, k, *res, check_usvh_A=True, check_svd=True)
return
message = ("`k` must be an integer satisfying")
with pytest.raises(ValueError, match=message):
svds(A, k=k, solver=self.solver)
def test_svds_input_validation_k_2(self):
# I think the stack trace is reasonable when `k` can't be converted
# to an int.
message = "int() argument must be a"
with pytest.raises(TypeError, match=re.escape(message)):
svds(np.eye(10), k=[], solver=self.solver)
message = "invalid literal for int()"
with pytest.raises(ValueError, match=message):
svds(np.eye(10), k="hi", solver=self.solver)
@pytest.mark.parametrize("tol", (-1, np.inf, np.nan))
def test_svds_input_validation_tol_1(self, tol):
message = "`tol` must be a non-negative floating point value."
with pytest.raises(ValueError, match=message):
svds(np.eye(10), tol=tol, solver=self.solver)
@pytest.mark.parametrize("tol", ([], 'hi'))
def test_svds_input_validation_tol_2(self, tol):
# I think the stack trace is reasonable here
message = "'<' not supported between instances"
with pytest.raises(TypeError, match=message):
svds(np.eye(10), tol=tol, solver=self.solver)
@pytest.mark.parametrize("which", ('LA', 'SA', 'ekki', 0))
def test_svds_input_validation_which(self, which):
# Regression test for a github issue.
# https://github.com/scipy/scipy/issues/4590
# Function was not checking for eigenvalue type and unintended
# values could be returned.
with pytest.raises(ValueError, match="`which` must be in"):
svds(np.eye(10), which=which, solver=self.solver)
@pytest.mark.parametrize("transpose", (True, False))
@pytest.mark.parametrize("n", range(4, 9))
def test_svds_input_validation_v0_1(self, transpose, n):
rng = np.random.default_rng(0)
A = rng.random((5, 7))
v0 = rng.random(n)
if transpose:
A = A.T
k = 2
message = "`v0` must have shape"
required_length = (A.shape[0] if self.solver == 'propack'
else min(A.shape))
if n != required_length:
with pytest.raises(ValueError, match=message):
svds(A, k=k, v0=v0, solver=self.solver)
def test_svds_input_validation_v0_2(self):
A = np.ones((10, 10))
v0 = np.ones((1, 10))
message = "`v0` must have shape"
with pytest.raises(ValueError, match=message):
svds(A, k=1, v0=v0, solver=self.solver)
@pytest.mark.parametrize("v0", ("hi", 1, np.ones(10, dtype=int)))
def test_svds_input_validation_v0_3(self, v0):
A = np.ones((10, 10))
message = "`v0` must be of floating or complex floating data type."
with pytest.raises(ValueError, match=message):
svds(A, k=1, v0=v0, solver=self.solver)
@pytest.mark.parametrize("maxiter", (-1, 0, 5.5))
def test_svds_input_validation_maxiter_1(self, maxiter):
message = ("`maxiter` must be a positive integer.")
with pytest.raises(ValueError, match=message):
svds(np.eye(10), maxiter=maxiter, solver=self.solver)
def test_svds_input_validation_maxiter_2(self):
# I think the stack trace is reasonable when `k` can't be converted
# to an int.
message = "int() argument must be a"
with pytest.raises(TypeError, match=re.escape(message)):
svds(np.eye(10), maxiter=[], solver=self.solver)
message = "invalid literal for int()"
with pytest.raises(ValueError, match=message):
svds(np.eye(10), maxiter="hi", solver=self.solver)
@pytest.mark.parametrize("rsv", ('ekki', 10))
def test_svds_input_validation_return_singular_vectors(self, rsv):
message = "`return_singular_vectors` must be in"
with pytest.raises(ValueError, match=message):
svds(np.eye(10), return_singular_vectors=rsv, solver=self.solver)
# --- Test Parameters ---
@pytest.mark.parametrize("k", [3, 5])
@pytest.mark.parametrize("which", ["LM", "SM"])
def test_svds_parameter_k_which(self, k, which):
if self.solver == 'propack':
if not has_propack:
pytest.skip("PROPACK not available")
# check that the `k` parameter sets the number of eigenvalues/
# eigenvectors returned.
# Also check that the `which` parameter sets whether the largest or
# smallest eigenvalues are returned
rng = np.random.default_rng(0)
A = rng.random((10, 10))
if self.solver == 'lobpcg':
with pytest.warns(UserWarning, match="The problem size"):
res = svds(A, k=k, which=which, solver=self.solver,
random_state=0)
else:
res = svds(A, k=k, which=which, solver=self.solver,
random_state=0)
_check_svds(A, k, *res, which=which, atol=8e-10)
# loop instead of parametrize for simplicity
def test_svds_parameter_tol(self):
if self.solver == 'propack':
if not has_propack:
pytest.skip("PROPACK not available")
return # TODO: needs work, disabling for now
# check the effect of the `tol` parameter on solver accuracy by solving
# the same problem with varying `tol` and comparing the eigenvalues
# against ground truth computed
n = 100 # matrix size
k = 3 # number of eigenvalues to check
# generate a random, sparse-ish matrix
# effect isn't apparent for matrices that are too small
rng = np.random.default_rng(0)
A = rng.random((n, n))
A[A > .1] = 0
A = A @ A.T
_, s, _ = svd(A) # calculate ground truth
# calculate the error as a function of `tol`
A = csc_matrix(A)
def err(tol):
if self.solver == 'lobpcg' and tol == 1e-4:
with pytest.warns(UserWarning, match="Exited at iteration"):
_, s2, _ = svds(A, k=k, v0=np.ones(n),
solver=self.solver, tol=tol)
else:
_, s2, _ = svds(A, k=k, v0=np.ones(n),
solver=self.solver, tol=tol)
return np.linalg.norm((s2 - s[k-1::-1])/s[k-1::-1])
tols = [1e-4, 1e-2, 1e0] # tolerance levels to check
# for 'arpack' and 'propack', accuracies make discrete steps
accuracies = {'propack': [1e-12, 1e-6, 1e-4],
'arpack': [2e-15, 1e-10, 1e-10],
'lobpcg': [1e-11, 1e-3, 10]}
for tol, accuracy in zip(tols, accuracies[self.solver]):
error = err(tol)
assert error < accuracy
assert error > accuracy/10
def test_svd_v0(self):
if self.solver == 'propack':
if not has_propack:
pytest.skip("PROPACK not available")
# check that the `v0` parameter affects the solution
n = 100
k = 1
# If k != 1, LOBPCG needs more initial vectors, which are generated
# with random_state, so it does not pass w/ k >= 2.
# For some other values of `n`, the AssertionErrors are not raised
# with different v0s, which is reasonable.
rng = np.random.default_rng(0)
A = rng.random((n, n))
# with the same v0, solutions are the same, and they are accurate
# v0 takes precedence over random_state
v0a = rng.random(n)
res1a = svds(A, k, v0=v0a, solver=self.solver, random_state=0)
res2a = svds(A, k, v0=v0a, solver=self.solver, random_state=1)
assert_equal(res1a, res2a)
_check_svds(A, k, *res1a)
# with the same v0, solutions are the same, and they are accurate
v0b = rng.random(n)
res1b = svds(A, k, v0=v0b, solver=self.solver, random_state=2)
res2b = svds(A, k, v0=v0b, solver=self.solver, random_state=3)
assert_equal(res1b, res2b)
_check_svds(A, k, *res1b)
# with different v0, solutions can be numerically different
message = "Arrays are not equal"
with pytest.raises(AssertionError, match=message):
assert_equal(res1a, res1b)
def test_svd_random_state(self):
if self.solver == 'propack':
if not has_propack:
pytest.skip("PROPACK not available")
# check that the `random_state` parameter affects the solution
# Admittedly, `n` and `k` are chosen so that all solver pass all
# these checks. That's a tall order, since LOBPCG doesn't want to
# achieve the desired accuracy and ARPACK often returns the same
# singular values/vectors for different v0.
n = 100
k = 1
rng = np.random.default_rng(0)
A = rng.random((n, n))
# with the same random_state, solutions are the same and accurate
res1a = svds(A, k, solver=self.solver, random_state=0)
res2a = svds(A, k, solver=self.solver, random_state=0)
assert_equal(res1a, res2a)
_check_svds(A, k, *res1a)
# with the same random_state, solutions are the same and accurate
res1b = svds(A, k, solver=self.solver, random_state=1)
res2b = svds(A, k, solver=self.solver, random_state=1)
assert_equal(res1b, res2b)
_check_svds(A, k, *res1b)
# with different random_state, solutions can be numerically different
message = "Arrays are not equal"
with pytest.raises(AssertionError, match=message):
assert_equal(res1a, res1b)
@pytest.mark.parametrize("random_state", (0, 1,
np.random.RandomState(0),
np.random.default_rng(0)))
def test_svd_random_state_2(self, random_state):
if self.solver == 'propack':
if not has_propack:
pytest.skip("PROPACK not available")
n = 100
k = 1
rng = np.random.default_rng(0)
A = rng.random((n, n))
random_state_2 = copy.deepcopy(random_state)
# with the same random_state, solutions are the same and accurate
res1a = svds(A, k, solver=self.solver, random_state=random_state)
res2a = svds(A, k, solver=self.solver, random_state=random_state_2)
assert_equal(res1a, res2a)
_check_svds(A, k, *res1a)
@pytest.mark.parametrize("random_state", (None,
np.random.RandomState(0),
np.random.default_rng(0)))
def test_svd_random_state_3(self, random_state):
if self.solver == 'propack':
if not has_propack:
pytest.skip("PROPACK not available")
n = 100
k = 5
rng = np.random.default_rng(0)
A = rng.random((n, n))
# random_state in different state produces accurate - but not
# not necessarily identical - results
res1a = svds(A, k, solver=self.solver, random_state=random_state)
res2a = svds(A, k, solver=self.solver, random_state=random_state)
_check_svds(A, k, *res1a, atol=2e-10, rtol=1e-6)
_check_svds(A, k, *res2a, atol=2e-10, rtol=1e-6)
message = "Arrays are not equal"
with pytest.raises(AssertionError, match=message):
assert_equal(res1a, res2a)
@pytest.mark.filterwarnings("ignore:Exited postprocessing")
def test_svd_maxiter(self):
# check that maxiter works as expected: should not return accurate
# solution after 1 iteration, but should with default `maxiter`
if self.solver == 'propack':
if not has_propack:
pytest.skip("PROPACK not available")
A = np.diag(np.arange(9)).astype(np.float64)
k = 1
u, s, vh = sorted_svd(A, k)
if self.solver == 'arpack':
message = "ARPACK error -1: No convergence"
with pytest.raises(ArpackNoConvergence, match=message):
svds(A, k, ncv=3, maxiter=1, solver=self.solver)
elif self.solver == 'lobpcg':
with pytest.warns(UserWarning, match="Exited at iteration"):
svds(A, k, maxiter=1, solver=self.solver)
elif self.solver == 'propack':
message = "k=1 singular triplets did not converge within"
with pytest.raises(np.linalg.LinAlgError, match=message):
svds(A, k, maxiter=1, solver=self.solver)
ud, sd, vhd = svds(A, k, solver=self.solver) # default maxiter
_check_svds(A, k, ud, sd, vhd, atol=1e-8)
assert_allclose(np.abs(ud), np.abs(u), atol=1e-8)
assert_allclose(np.abs(vhd), np.abs(vh), atol=1e-8)
assert_allclose(np.abs(sd), np.abs(s), atol=1e-9)
@pytest.mark.parametrize("rsv", (True, False, 'u', 'vh'))
@pytest.mark.parametrize("shape", ((5, 7), (6, 6), (7, 5)))
def test_svd_return_singular_vectors(self, rsv, shape):
# check that the return_singular_vectors parameter works as expected
if self.solver == 'propack':
if not has_propack:
pytest.skip("PROPACK not available")
rng = np.random.default_rng(0)
A = rng.random(shape)
k = 2
M, N = shape
u, s, vh = sorted_svd(A, k)
respect_u = True if self.solver == 'propack' else M <= N
respect_vh = True if self.solver == 'propack' else M > N
if self.solver == 'lobpcg':
with pytest.warns(UserWarning, match="The problem size"):
if rsv is False:
s2 = svds(A, k, return_singular_vectors=rsv,
solver=self.solver, random_state=rng)
assert_allclose(s2, s)
elif rsv == 'u' and respect_u:
u2, s2, vh2 = svds(A, k, return_singular_vectors=rsv,
solver=self.solver, random_state=rng)
assert_allclose(np.abs(u2), np.abs(u))
assert_allclose(s2, s)
assert vh2 is None
elif rsv == 'vh' and respect_vh:
u2, s2, vh2 = svds(A, k, return_singular_vectors=rsv,
solver=self.solver, random_state=rng)
assert u2 is None
assert_allclose(s2, s)
assert_allclose(np.abs(vh2), np.abs(vh))
else:
u2, s2, vh2 = svds(A, k, return_singular_vectors=rsv,
solver=self.solver, random_state=rng)
if u2 is not None:
assert_allclose(np.abs(u2), np.abs(u))
assert_allclose(s2, s)
if vh2 is not None:
assert_allclose(np.abs(vh2), np.abs(vh))
else:
if rsv is False:
s2 = svds(A, k, return_singular_vectors=rsv,
solver=self.solver, random_state=rng)
assert_allclose(s2, s)
elif rsv == 'u' and respect_u:
u2, s2, vh2 = svds(A, k, return_singular_vectors=rsv,
solver=self.solver, random_state=rng)
assert_allclose(np.abs(u2), np.abs(u))
assert_allclose(s2, s)
assert vh2 is None
elif rsv == 'vh' and respect_vh:
u2, s2, vh2 = svds(A, k, return_singular_vectors=rsv,
solver=self.solver, random_state=rng)
assert u2 is None
assert_allclose(s2, s)
assert_allclose(np.abs(vh2), np.abs(vh))
else:
u2, s2, vh2 = svds(A, k, return_singular_vectors=rsv,
solver=self.solver, random_state=rng)
if u2 is not None:
assert_allclose(np.abs(u2), np.abs(u))
assert_allclose(s2, s)
if vh2 is not None:
assert_allclose(np.abs(vh2), np.abs(vh))
# --- Test Basic Functionality ---
# Tests the accuracy of each solver for real and complex matrices provided
# as list, dense array, sparse matrix, and LinearOperator.
A1 = [[1, 2, 3], [3, 4, 3], [1 + 1j, 0, 2], [0, 0, 1]]
A2 = [[1, 2, 3, 8 + 5j], [3 - 2j, 4, 3, 5], [1, 0, 2, 3], [0, 0, 1, 0]]
@pytest.mark.filterwarnings("ignore:k >= N - 1",
reason="needed to demonstrate #16725")
@pytest.mark.parametrize('A', (A1, A2))
@pytest.mark.parametrize('k', range(1, 5))
# PROPACK fails a lot if @pytest.mark.parametrize('which', ("SM", "LM"))
@pytest.mark.parametrize('real', (True, False))
@pytest.mark.parametrize('transpose', (False, True))
# In gh-14299, it was suggested the `svds` should _not_ work with lists
@pytest.mark.parametrize('lo_type', (np.asarray, csc_matrix,
aslinearoperator))
def test_svd_simple(self, A, k, real, transpose, lo_type):
if self.solver == 'propack':
if not has_propack:
pytest.skip("PROPACK not available")
A = np.asarray(A)
A = np.real(A) if real else A
A = A.T if transpose else A
A2 = lo_type(A)
# could check for the appropriate errors, but that is tested above
if k > min(A.shape):
pytest.skip("`k` cannot be greater than `min(A.shape)`")
if self.solver != 'propack' and k >= min(A.shape):
pytest.skip("Only PROPACK supports complete SVD")
if self.solver == 'arpack' and not real and k == min(A.shape) - 1:
pytest.skip("#16725")
if self.solver == 'propack' and (np.intp(0).itemsize < 8 and not real):
pytest.skip('PROPACK complex-valued SVD methods not available '
'for 32-bit builds')
if self.solver == 'lobpcg':
with pytest.warns(UserWarning, match="The problem size"):
u, s, vh = svds(A2, k, solver=self.solver)
else:
u, s, vh = svds(A2, k, solver=self.solver)
_check_svds(A, k, u, s, vh, atol=3e-10)
def test_svd_linop(self):
solver = self.solver
if self.solver == 'propack':
if not has_propack:
pytest.skip("PROPACK not available")
nmks = [(6, 7, 3),
(9, 5, 4),
(10, 8, 5)]
def reorder(args):
U, s, VH = args
j = np.argsort(s)
return U[:, j], s[j], VH[j, :]
for n, m, k in nmks:
# Test svds on a LinearOperator.
A = np.random.RandomState(52).randn(n, m)
L = CheckingLinearOperator(A)
if solver == 'propack':
v0 = np.ones(n)
else:
v0 = np.ones(min(A.shape))
if solver == 'lobpcg':
with pytest.warns(UserWarning, match="The problem size"):
U1, s1, VH1 = reorder(svds(A, k, v0=v0, solver=solver))
U2, s2, VH2 = reorder(svds(L, k, v0=v0, solver=solver))
else:
U1, s1, VH1 = reorder(svds(A, k, v0=v0, solver=solver))
U2, s2, VH2 = reorder(svds(L, k, v0=v0, solver=solver))
assert_allclose(np.abs(U1), np.abs(U2))
assert_allclose(s1, s2)
assert_allclose(np.abs(VH1), np.abs(VH2))
assert_allclose(np.dot(U1, np.dot(np.diag(s1), VH1)),
np.dot(U2, np.dot(np.diag(s2), VH2)))
# Try again with which="SM".
A = np.random.RandomState(1909).randn(n, m)
L = CheckingLinearOperator(A)
# TODO: arpack crashes when v0=v0, which="SM"
kwargs = {'v0': v0} if solver not in {None, 'arpack'} else {}
if self.solver == 'lobpcg':
with pytest.warns(UserWarning, match="The problem size"):
U1, s1, VH1 = reorder(svds(A, k, which="SM", solver=solver,
**kwargs))
U2, s2, VH2 = reorder(svds(L, k, which="SM", solver=solver,
**kwargs))
else:
U1, s1, VH1 = reorder(svds(A, k, which="SM", solver=solver,
**kwargs))
U2, s2, VH2 = reorder(svds(L, k, which="SM", solver=solver,
**kwargs))
assert_allclose(np.abs(U1), np.abs(U2))
assert_allclose(s1 + 1, s2 + 1)
assert_allclose(np.abs(VH1), np.abs(VH2))
assert_allclose(np.dot(U1, np.dot(np.diag(s1), VH1)),
np.dot(U2, np.dot(np.diag(s2), VH2)))
if k < min(n, m) - 1:
# Complex input and explicit which="LM".
for (dt, eps) in [(complex, 1e-7), (np.complex64, 1e-3)]:
if self.solver == 'propack' and np.intp(0).itemsize < 8:
pytest.skip('PROPACK complex-valued SVD methods '
'not available for 32-bit builds')
rng = np.random.RandomState(1648)
A = (rng.randn(n, m) + 1j * rng.randn(n, m)).astype(dt)
L = CheckingLinearOperator(A)
if self.solver == 'lobpcg':
with pytest.warns(UserWarning,
match="The problem size"):
U1, s1, VH1 = reorder(svds(A, k, which="LM",
solver=solver))
U2, s2, VH2 = reorder(svds(L, k, which="LM",
solver=solver))
else:
U1, s1, VH1 = reorder(svds(A, k, which="LM",
solver=solver))
U2, s2, VH2 = reorder(svds(L, k, which="LM",
solver=solver))
assert_allclose(np.abs(U1), np.abs(U2), rtol=eps)
assert_allclose(s1, s2, rtol=eps)
assert_allclose(np.abs(VH1), np.abs(VH2), rtol=eps)
assert_allclose(np.dot(U1, np.dot(np.diag(s1), VH1)),
np.dot(U2, np.dot(np.diag(s2), VH2)),
rtol=eps)
SHAPES = ((100, 100), (100, 101), (101, 100))
@pytest.mark.filterwarnings("ignore:Exited at iteration")
@pytest.mark.filterwarnings("ignore:Exited postprocessing")
@pytest.mark.parametrize("shape", SHAPES)
# ARPACK supports only dtype float, complex, or np.float32
@pytest.mark.parametrize("dtype", (float, complex, np.float32))
def test_small_sigma_sparse(self, shape, dtype):
# https://github.com/scipy/scipy/pull/11829
solver = self.solver
# 2do: PROPACK fails orthogonality of singular vectors
# if dtype == complex and self.solver == 'propack':
# pytest.skip("PROPACK unsupported for complex dtype")
if solver == 'propack':
pytest.skip("PROPACK failures unrelated to PR")
rng = np.random.default_rng(0)
k = 5
(m, n) = shape
S = random(m, n, density=0.1, random_state=rng)
if dtype == complex:
S = + 1j * random(m, n, density=0.1, random_state=rng)
e = np.ones(m)
e[0:5] *= 1e1 ** np.arange(-5, 0, 1)
S = spdiags(e, 0, m, m) @ S
S = S.astype(dtype)
u, s, vh = svds(S, k, which='SM', solver=solver, maxiter=1000)
c_svd = False # partial SVD can be different from full SVD
_check_svds_n(S, k, u, s, vh, which="SM", check_svd=c_svd, atol=1e-1)
# --- Test Edge Cases ---
# Checks a few edge cases.
@pytest.mark.parametrize("shape", ((6, 5), (5, 5), (5, 6)))
@pytest.mark.parametrize("dtype", (float, complex))
def test_svd_LM_ones_matrix(self, shape, dtype):
# Check that svds can deal with matrix_rank less than k in LM mode.
k = 3
n, m = shape
A = np.ones((n, m), dtype=dtype)
if self.solver == 'lobpcg':
with pytest.warns(UserWarning, match="The problem size"):
U, s, VH = svds(A, k, solver=self.solver)
else:
U, s, VH = svds(A, k, solver=self.solver)
_check_svds(A, k, U, s, VH, check_usvh_A=True, check_svd=False)
# Check that the largest singular value is near sqrt(n*m)
# and the other singular values have been forced to zero.
assert_allclose(np.max(s), np.sqrt(n*m))
s = np.array(sorted(s)[:-1]) + 1
z = np.ones_like(s)
assert_allclose(s, z)
@pytest.mark.filterwarnings("ignore:k >= N - 1",
reason="needed to demonstrate #16725")
@pytest.mark.parametrize("shape", ((3, 4), (4, 4), (4, 3), (4, 2)))
@pytest.mark.parametrize("dtype", (float, complex))
def test_zero_matrix(self, shape, dtype):
# Check that svds can deal with matrices containing only zeros;
# see https://github.com/scipy/scipy/issues/3452/
# shape = (4, 2) is included because it is the particular case
# reported in the issue
k = 1
n, m = shape
A = np.zeros((n, m), dtype=dtype)
if (self.solver == 'arpack' and dtype is complex
and k == min(A.shape) - 1):
pytest.skip("#16725")
if self.solver == 'propack':
pytest.skip("PROPACK failures unrelated to PR #16712")
if self.solver == 'lobpcg':
with pytest.warns(UserWarning, match="The problem size"):
U, s, VH = svds(A, k, solver=self.solver)
else:
U, s, VH = svds(A, k, solver=self.solver)
# Check some generic properties of svd.
_check_svds(A, k, U, s, VH, check_usvh_A=True, check_svd=False)
# Check that the singular values are zero.
assert_array_equal(s, 0)
@pytest.mark.parametrize("shape", ((20, 20), (20, 21), (21, 20)))
# ARPACK supports only dtype float, complex, or np.float32
@pytest.mark.parametrize("dtype", (float, complex, np.float32))
def test_small_sigma(self, shape, dtype):
if not has_propack:
pytest.skip("PROPACK not enabled")
# https://github.com/scipy/scipy/pull/11829
if dtype == complex and self.solver == 'propack':
pytest.skip("PROPACK unsupported for complex dtype")
rng = np.random.default_rng(179847540)
A = rng.random(shape).astype(dtype)
u, _, vh = svd(A, full_matrices=False)
if dtype == np.float32:
e = 10.0
else:
e = 100.0
t = e**(-np.arange(len(vh))).astype(dtype)
A = (u*t).dot(vh)
k = 4
u, s, vh = svds(A, k, solver=self.solver, maxiter=100)
t = np.sum(s > 0)
assert_equal(t, k)
# LOBPCG needs larger atol and rtol to pass
_check_svds_n(A, k, u, s, vh, atol=1e-3, rtol=1e0, check_svd=False)
# ARPACK supports only dtype float, complex, or np.float32
@pytest.mark.filterwarnings("ignore:The problem size")
@pytest.mark.parametrize("dtype", (float, complex, np.float32))
def test_small_sigma2(self, dtype):
if self.solver == 'propack':
if not has_propack:
pytest.skip("PROPACK not enabled")
elif dtype == np.float32:
pytest.skip("Test failures in CI, see gh-17004")
elif dtype == complex:
# https://github.com/scipy/scipy/issues/11406
pytest.skip("PROPACK unsupported for complex dtype")
rng = np.random.default_rng(179847540)
# create a 10x10 singular matrix with a 4-dim null space
dim = 4
size = 10
x = rng.random((size, size-dim))
y = x[:, :dim] * rng.random(dim)
mat = np.hstack((x, y))
mat = mat.astype(dtype)
nz = null_space(mat)
assert_equal(nz.shape[1], dim)
# Tolerances atol and rtol adjusted to pass np.float32
# Use non-sparse svd
u, s, vh = svd(mat)
# Singular values are 0:
assert_allclose(s[-dim:], 0, atol=1e-6, rtol=1e0)
# Smallest right singular vectors in null space:
assert_allclose(mat @ vh[-dim:, :].T, 0, atol=1e-6, rtol=1e0)
# Smallest singular values should be 0
sp_mat = csc_matrix(mat)
su, ss, svh = svds(sp_mat, k=dim, which='SM', solver=self.solver)
# Smallest dim singular values are 0:
assert_allclose(ss, 0, atol=1e-5, rtol=1e0)
# Smallest singular vectors via svds in null space:
n, m = mat.shape
if n < m: # else the assert fails with some libraries unclear why
assert_allclose(sp_mat.transpose() @ su, 0, atol=1e-5, rtol=1e0)
assert_allclose(sp_mat @ svh.T, 0, atol=1e-5, rtol=1e0)
# --- Perform tests with each solver ---
class Test_SVDS_once():
@pytest.mark.parametrize("solver", ['ekki', object])
def test_svds_input_validation_solver(self, solver):
message = "solver must be one of"
with pytest.raises(ValueError, match=message):
svds(np.ones((3, 4)), k=2, solver=solver)
class Test_SVDS_ARPACK(SVDSCommonTests):
def setup_method(self):
self.solver = 'arpack'
@pytest.mark.parametrize("ncv", list(range(-1, 8)) + [4.5, "5"])
def test_svds_input_validation_ncv_1(self, ncv):
rng = np.random.default_rng(0)
A = rng.random((6, 7))
k = 3
if ncv in {4, 5}:
u, s, vh = svds(A, k=k, ncv=ncv, solver=self.solver)
# partial decomposition, so don't check that u@diag(s)@vh=A;
# do check that scipy.sparse.linalg.svds ~ scipy.linalg.svd
_check_svds(A, k, u, s, vh)
else:
message = ("`ncv` must be an integer satisfying")
with pytest.raises(ValueError, match=message):
svds(A, k=k, ncv=ncv, solver=self.solver)
def test_svds_input_validation_ncv_2(self):
# I think the stack trace is reasonable when `ncv` can't be converted
# to an int.
message = "int() argument must be a"
with pytest.raises(TypeError, match=re.escape(message)):
svds(np.eye(10), ncv=[], solver=self.solver)
message = "invalid literal for int()"
with pytest.raises(ValueError, match=message):
svds(np.eye(10), ncv="hi", solver=self.solver)
# I can't see a robust relationship between `ncv` and relevant outputs
# (e.g. accuracy, time), so no test of the parameter.
class Test_SVDS_LOBPCG(SVDSCommonTests):
def setup_method(self):
self.solver = 'lobpcg'
def test_svd_random_state_3(self):
pytest.xfail("LOBPCG is having trouble with accuracy.")
class Test_SVDS_PROPACK(SVDSCommonTests):
def setup_method(self):
self.solver = 'propack'
def test_svd_LM_ones_matrix(self):
message = ("PROPACK does not return orthonormal singular vectors "
"associated with zero singular values.")
# There are some other issues with this matrix of all ones, e.g.
# `which='sm'` and `k=1` returns the largest singular value
pytest.xfail(message)
def test_svd_LM_zeros_matrix(self):
message = ("PROPACK does not return orthonormal singular vectors "
"associated with zero singular values.")
pytest.xfail(message)