557 lines
21 KiB
Python
557 lines
21 KiB
Python
|
"""Kernel Principal Components Analysis."""
|
|||
|
|
|||
|
# Author: Mathieu Blondel <mathieu@mblondel.org>
|
|||
|
# Sylvain Marie <sylvain.marie@schneider-electric.com>
|
|||
|
# License: BSD 3 clause
|
|||
|
|
|||
|
import numpy as np
|
|||
|
from numbers import Integral, Real
|
|||
|
from scipy import linalg
|
|||
|
from scipy.sparse.linalg import eigsh
|
|||
|
|
|||
|
from ..utils._arpack import _init_arpack_v0
|
|||
|
from ..utils.fixes import _eigh
|
|||
|
from ..utils.extmath import svd_flip, _randomized_eigsh
|
|||
|
from ..utils.validation import (
|
|||
|
check_is_fitted,
|
|||
|
_check_psd_eigenvalues,
|
|||
|
)
|
|||
|
from ..utils._param_validation import Interval, StrOptions
|
|||
|
from ..exceptions import NotFittedError
|
|||
|
from ..base import BaseEstimator, TransformerMixin, ClassNamePrefixFeaturesOutMixin
|
|||
|
from ..preprocessing import KernelCenterer
|
|||
|
from ..metrics.pairwise import pairwise_kernels
|
|||
|
|
|||
|
|
|||
|
class KernelPCA(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
|
|||
|
"""Kernel Principal component analysis (KPCA) [1]_.
|
|||
|
|
|||
|
Non-linear dimensionality reduction through the use of kernels (see
|
|||
|
:ref:`metrics`).
|
|||
|
|
|||
|
It uses the :func:`scipy.linalg.eigh` LAPACK implementation of the full SVD
|
|||
|
or the :func:`scipy.sparse.linalg.eigsh` ARPACK implementation of the
|
|||
|
truncated SVD, depending on the shape of the input data and the number of
|
|||
|
components to extract. It can also use a randomized truncated SVD by the
|
|||
|
method proposed in [3]_, see `eigen_solver`.
|
|||
|
|
|||
|
Read more in the :ref:`User Guide <kernel_PCA>`.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
n_components : int, default=None
|
|||
|
Number of components. If None, all non-zero components are kept.
|
|||
|
|
|||
|
kernel : {'linear', 'poly', 'rbf', 'sigmoid', 'cosine', 'precomputed'} \
|
|||
|
or callable, default='linear'
|
|||
|
Kernel used for PCA.
|
|||
|
|
|||
|
gamma : float, default=None
|
|||
|
Kernel coefficient for rbf, poly and sigmoid kernels. Ignored by other
|
|||
|
kernels. If ``gamma`` is ``None``, then it is set to ``1/n_features``.
|
|||
|
|
|||
|
degree : int, default=3
|
|||
|
Degree for poly kernels. Ignored by other kernels.
|
|||
|
|
|||
|
coef0 : float, default=1
|
|||
|
Independent term in poly and sigmoid kernels.
|
|||
|
Ignored by other kernels.
|
|||
|
|
|||
|
kernel_params : dict, default=None
|
|||
|
Parameters (keyword arguments) and
|
|||
|
values for kernel passed as callable object.
|
|||
|
Ignored by other kernels.
|
|||
|
|
|||
|
alpha : float, default=1.0
|
|||
|
Hyperparameter of the ridge regression that learns the
|
|||
|
inverse transform (when fit_inverse_transform=True).
|
|||
|
|
|||
|
fit_inverse_transform : bool, default=False
|
|||
|
Learn the inverse transform for non-precomputed kernels
|
|||
|
(i.e. learn to find the pre-image of a point). This method is based
|
|||
|
on [2]_.
|
|||
|
|
|||
|
eigen_solver : {'auto', 'dense', 'arpack', 'randomized'}, \
|
|||
|
default='auto'
|
|||
|
Select eigensolver to use. If `n_components` is much
|
|||
|
less than the number of training samples, randomized (or arpack to a
|
|||
|
smaller extent) may be more efficient than the dense eigensolver.
|
|||
|
Randomized SVD is performed according to the method of Halko et al
|
|||
|
[3]_.
|
|||
|
|
|||
|
auto :
|
|||
|
the solver is selected by a default policy based on n_samples
|
|||
|
(the number of training samples) and `n_components`:
|
|||
|
if the number of components to extract is less than 10 (strict) and
|
|||
|
the number of samples is more than 200 (strict), the 'arpack'
|
|||
|
method is enabled. Otherwise the exact full eigenvalue
|
|||
|
decomposition is computed and optionally truncated afterwards
|
|||
|
('dense' method).
|
|||
|
dense :
|
|||
|
run exact full eigenvalue decomposition calling the standard
|
|||
|
LAPACK solver via `scipy.linalg.eigh`, and select the components
|
|||
|
by postprocessing
|
|||
|
arpack :
|
|||
|
run SVD truncated to n_components calling ARPACK solver using
|
|||
|
`scipy.sparse.linalg.eigsh`. It requires strictly
|
|||
|
0 < n_components < n_samples
|
|||
|
randomized :
|
|||
|
run randomized SVD by the method of Halko et al. [3]_. The current
|
|||
|
implementation selects eigenvalues based on their module; therefore
|
|||
|
using this method can lead to unexpected results if the kernel is
|
|||
|
not positive semi-definite. See also [4]_.
|
|||
|
|
|||
|
.. versionchanged:: 1.0
|
|||
|
`'randomized'` was added.
|
|||
|
|
|||
|
tol : float, default=0
|
|||
|
Convergence tolerance for arpack.
|
|||
|
If 0, optimal value will be chosen by arpack.
|
|||
|
|
|||
|
max_iter : int, default=None
|
|||
|
Maximum number of iterations for arpack.
|
|||
|
If None, optimal value will be chosen by arpack.
|
|||
|
|
|||
|
iterated_power : int >= 0, or 'auto', default='auto'
|
|||
|
Number of iterations for the power method computed by
|
|||
|
svd_solver == 'randomized'. When 'auto', it is set to 7 when
|
|||
|
`n_components < 0.1 * min(X.shape)`, other it is set to 4.
|
|||
|
|
|||
|
.. versionadded:: 1.0
|
|||
|
|
|||
|
remove_zero_eig : bool, default=False
|
|||
|
If True, then all components with zero eigenvalues are removed, so
|
|||
|
that the number of components in the output may be < n_components
|
|||
|
(and sometimes even zero due to numerical instability).
|
|||
|
When n_components is None, this parameter is ignored and components
|
|||
|
with zero eigenvalues are removed regardless.
|
|||
|
|
|||
|
random_state : int, RandomState instance or None, default=None
|
|||
|
Used when ``eigen_solver`` == 'arpack' or 'randomized'. Pass an int
|
|||
|
for reproducible results across multiple function calls.
|
|||
|
See :term:`Glossary <random_state>`.
|
|||
|
|
|||
|
.. versionadded:: 0.18
|
|||
|
|
|||
|
copy_X : bool, default=True
|
|||
|
If True, input X is copied and stored by the model in the `X_fit_`
|
|||
|
attribute. If no further changes will be done to X, setting
|
|||
|
`copy_X=False` saves memory by storing a reference.
|
|||
|
|
|||
|
.. versionadded:: 0.18
|
|||
|
|
|||
|
n_jobs : int, default=None
|
|||
|
The number of parallel jobs to run.
|
|||
|
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
|
|||
|
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
|
|||
|
for more details.
|
|||
|
|
|||
|
.. versionadded:: 0.18
|
|||
|
|
|||
|
Attributes
|
|||
|
----------
|
|||
|
eigenvalues_ : ndarray of shape (n_components,)
|
|||
|
Eigenvalues of the centered kernel matrix in decreasing order.
|
|||
|
If `n_components` and `remove_zero_eig` are not set,
|
|||
|
then all values are stored.
|
|||
|
|
|||
|
eigenvectors_ : ndarray of shape (n_samples, n_components)
|
|||
|
Eigenvectors of the centered kernel matrix. If `n_components` and
|
|||
|
`remove_zero_eig` are not set, then all components are stored.
|
|||
|
|
|||
|
dual_coef_ : ndarray of shape (n_samples, n_features)
|
|||
|
Inverse transform matrix. Only available when
|
|||
|
``fit_inverse_transform`` is True.
|
|||
|
|
|||
|
X_transformed_fit_ : ndarray of shape (n_samples, n_components)
|
|||
|
Projection of the fitted data on the kernel principal components.
|
|||
|
Only available when ``fit_inverse_transform`` is True.
|
|||
|
|
|||
|
X_fit_ : ndarray of shape (n_samples, n_features)
|
|||
|
The data used to fit the model. If `copy_X=False`, then `X_fit_` is
|
|||
|
a reference. This attribute is used for the calls to transform.
|
|||
|
|
|||
|
n_features_in_ : int
|
|||
|
Number of features seen during :term:`fit`.
|
|||
|
|
|||
|
.. versionadded:: 0.24
|
|||
|
|
|||
|
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
|||
|
Names of features seen during :term:`fit`. Defined only when `X`
|
|||
|
has feature names that are all strings.
|
|||
|
|
|||
|
.. versionadded:: 1.0
|
|||
|
|
|||
|
See Also
|
|||
|
--------
|
|||
|
FastICA : A fast algorithm for Independent Component Analysis.
|
|||
|
IncrementalPCA : Incremental Principal Component Analysis.
|
|||
|
NMF : Non-Negative Matrix Factorization.
|
|||
|
PCA : Principal Component Analysis.
|
|||
|
SparsePCA : Sparse Principal Component Analysis.
|
|||
|
TruncatedSVD : Dimensionality reduction using truncated SVD.
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] `Schölkopf, Bernhard, Alexander Smola, and Klaus-Robert Müller.
|
|||
|
"Kernel principal component analysis."
|
|||
|
International conference on artificial neural networks.
|
|||
|
Springer, Berlin, Heidelberg, 1997.
|
|||
|
<https://people.eecs.berkeley.edu/~wainwrig/stat241b/scholkopf_kernel.pdf>`_
|
|||
|
|
|||
|
.. [2] `Bakır, Gökhan H., Jason Weston, and Bernhard Schölkopf.
|
|||
|
"Learning to find pre-images."
|
|||
|
Advances in neural information processing systems 16 (2004): 449-456.
|
|||
|
<https://papers.nips.cc/paper/2003/file/ac1ad983e08ad3304a97e147f522747e-Paper.pdf>`_
|
|||
|
|
|||
|
.. [3] :arxiv:`Halko, Nathan, Per-Gunnar Martinsson, and Joel A. Tropp.
|
|||
|
"Finding structure with randomness: Probabilistic algorithms for
|
|||
|
constructing approximate matrix decompositions."
|
|||
|
SIAM review 53.2 (2011): 217-288. <0909.4061>`
|
|||
|
|
|||
|
.. [4] `Martinsson, Per-Gunnar, Vladimir Rokhlin, and Mark Tygert.
|
|||
|
"A randomized algorithm for the decomposition of matrices."
|
|||
|
Applied and Computational Harmonic Analysis 30.1 (2011): 47-68.
|
|||
|
<https://www.sciencedirect.com/science/article/pii/S1063520310000242>`_
|
|||
|
|
|||
|
Examples
|
|||
|
--------
|
|||
|
>>> from sklearn.datasets import load_digits
|
|||
|
>>> from sklearn.decomposition import KernelPCA
|
|||
|
>>> X, _ = load_digits(return_X_y=True)
|
|||
|
>>> transformer = KernelPCA(n_components=7, kernel='linear')
|
|||
|
>>> X_transformed = transformer.fit_transform(X)
|
|||
|
>>> X_transformed.shape
|
|||
|
(1797, 7)
|
|||
|
"""
|
|||
|
|
|||
|
_parameter_constraints: dict = {
|
|||
|
"n_components": [
|
|||
|
Interval(Integral, 1, None, closed="left"),
|
|||
|
None,
|
|||
|
],
|
|||
|
"kernel": [
|
|||
|
StrOptions({"linear", "poly", "rbf", "sigmoid", "cosine", "precomputed"}),
|
|||
|
callable,
|
|||
|
],
|
|||
|
"gamma": [
|
|||
|
Interval(Real, 0, None, closed="left"),
|
|||
|
None,
|
|||
|
],
|
|||
|
"degree": [Interval(Integral, 0, None, closed="left")],
|
|||
|
"coef0": [Interval(Real, None, None, closed="neither")],
|
|||
|
"kernel_params": [dict, None],
|
|||
|
"alpha": [Interval(Real, 0, None, closed="left")],
|
|||
|
"fit_inverse_transform": ["boolean"],
|
|||
|
"eigen_solver": [StrOptions({"auto", "dense", "arpack", "randomized"})],
|
|||
|
"tol": [Interval(Real, 0, None, closed="left")],
|
|||
|
"max_iter": [
|
|||
|
Interval(Integral, 1, None, closed="left"),
|
|||
|
None,
|
|||
|
],
|
|||
|
"iterated_power": [
|
|||
|
Interval(Integral, 0, None, closed="left"),
|
|||
|
StrOptions({"auto"}),
|
|||
|
],
|
|||
|
"remove_zero_eig": ["boolean"],
|
|||
|
"random_state": ["random_state"],
|
|||
|
"copy_X": ["boolean"],
|
|||
|
"n_jobs": [None, Integral],
|
|||
|
}
|
|||
|
|
|||
|
def __init__(
|
|||
|
self,
|
|||
|
n_components=None,
|
|||
|
*,
|
|||
|
kernel="linear",
|
|||
|
gamma=None,
|
|||
|
degree=3,
|
|||
|
coef0=1,
|
|||
|
kernel_params=None,
|
|||
|
alpha=1.0,
|
|||
|
fit_inverse_transform=False,
|
|||
|
eigen_solver="auto",
|
|||
|
tol=0,
|
|||
|
max_iter=None,
|
|||
|
iterated_power="auto",
|
|||
|
remove_zero_eig=False,
|
|||
|
random_state=None,
|
|||
|
copy_X=True,
|
|||
|
n_jobs=None,
|
|||
|
):
|
|||
|
self.n_components = n_components
|
|||
|
self.kernel = kernel
|
|||
|
self.kernel_params = kernel_params
|
|||
|
self.gamma = gamma
|
|||
|
self.degree = degree
|
|||
|
self.coef0 = coef0
|
|||
|
self.alpha = alpha
|
|||
|
self.fit_inverse_transform = fit_inverse_transform
|
|||
|
self.eigen_solver = eigen_solver
|
|||
|
self.tol = tol
|
|||
|
self.max_iter = max_iter
|
|||
|
self.iterated_power = iterated_power
|
|||
|
self.remove_zero_eig = remove_zero_eig
|
|||
|
self.random_state = random_state
|
|||
|
self.n_jobs = n_jobs
|
|||
|
self.copy_X = copy_X
|
|||
|
|
|||
|
def _get_kernel(self, X, Y=None):
|
|||
|
if callable(self.kernel):
|
|||
|
params = self.kernel_params or {}
|
|||
|
else:
|
|||
|
params = {"gamma": self.gamma, "degree": self.degree, "coef0": self.coef0}
|
|||
|
return pairwise_kernels(
|
|||
|
X, Y, metric=self.kernel, filter_params=True, n_jobs=self.n_jobs, **params
|
|||
|
)
|
|||
|
|
|||
|
def _fit_transform(self, K):
|
|||
|
"""Fit's using kernel K"""
|
|||
|
# center kernel
|
|||
|
K = self._centerer.fit_transform(K)
|
|||
|
|
|||
|
# adjust n_components according to user inputs
|
|||
|
if self.n_components is None:
|
|||
|
n_components = K.shape[0] # use all dimensions
|
|||
|
else:
|
|||
|
n_components = min(K.shape[0], self.n_components)
|
|||
|
|
|||
|
# compute eigenvectors
|
|||
|
if self.eigen_solver == "auto":
|
|||
|
if K.shape[0] > 200 and n_components < 10:
|
|||
|
eigen_solver = "arpack"
|
|||
|
else:
|
|||
|
eigen_solver = "dense"
|
|||
|
else:
|
|||
|
eigen_solver = self.eigen_solver
|
|||
|
|
|||
|
if eigen_solver == "dense":
|
|||
|
# Note: subset_by_index specifies the indices of smallest/largest to return
|
|||
|
self.eigenvalues_, self.eigenvectors_ = _eigh(
|
|||
|
K, subset_by_index=(K.shape[0] - n_components, K.shape[0] - 1)
|
|||
|
)
|
|||
|
elif eigen_solver == "arpack":
|
|||
|
v0 = _init_arpack_v0(K.shape[0], self.random_state)
|
|||
|
self.eigenvalues_, self.eigenvectors_ = eigsh(
|
|||
|
K, n_components, which="LA", tol=self.tol, maxiter=self.max_iter, v0=v0
|
|||
|
)
|
|||
|
elif eigen_solver == "randomized":
|
|||
|
self.eigenvalues_, self.eigenvectors_ = _randomized_eigsh(
|
|||
|
K,
|
|||
|
n_components=n_components,
|
|||
|
n_iter=self.iterated_power,
|
|||
|
random_state=self.random_state,
|
|||
|
selection="module",
|
|||
|
)
|
|||
|
|
|||
|
# make sure that the eigenvalues are ok and fix numerical issues
|
|||
|
self.eigenvalues_ = _check_psd_eigenvalues(
|
|||
|
self.eigenvalues_, enable_warnings=False
|
|||
|
)
|
|||
|
|
|||
|
# flip eigenvectors' sign to enforce deterministic output
|
|||
|
self.eigenvectors_, _ = svd_flip(
|
|||
|
self.eigenvectors_, np.zeros_like(self.eigenvectors_).T
|
|||
|
)
|
|||
|
|
|||
|
# sort eigenvectors in descending order
|
|||
|
indices = self.eigenvalues_.argsort()[::-1]
|
|||
|
self.eigenvalues_ = self.eigenvalues_[indices]
|
|||
|
self.eigenvectors_ = self.eigenvectors_[:, indices]
|
|||
|
|
|||
|
# remove eigenvectors with a zero eigenvalue (null space) if required
|
|||
|
if self.remove_zero_eig or self.n_components is None:
|
|||
|
self.eigenvectors_ = self.eigenvectors_[:, self.eigenvalues_ > 0]
|
|||
|
self.eigenvalues_ = self.eigenvalues_[self.eigenvalues_ > 0]
|
|||
|
|
|||
|
# Maintenance note on Eigenvectors normalization
|
|||
|
# ----------------------------------------------
|
|||
|
# there is a link between
|
|||
|
# the eigenvectors of K=Phi(X)'Phi(X) and the ones of Phi(X)Phi(X)'
|
|||
|
# if v is an eigenvector of K
|
|||
|
# then Phi(X)v is an eigenvector of Phi(X)Phi(X)'
|
|||
|
# if u is an eigenvector of Phi(X)Phi(X)'
|
|||
|
# then Phi(X)'u is an eigenvector of Phi(X)'Phi(X)
|
|||
|
#
|
|||
|
# At this stage our self.eigenvectors_ (the v) have norm 1, we need to scale
|
|||
|
# them so that eigenvectors in kernel feature space (the u) have norm=1
|
|||
|
# instead
|
|||
|
#
|
|||
|
# We COULD scale them here:
|
|||
|
# self.eigenvectors_ = self.eigenvectors_ / np.sqrt(self.eigenvalues_)
|
|||
|
#
|
|||
|
# But choose to perform that LATER when needed, in `fit()` and in
|
|||
|
# `transform()`.
|
|||
|
|
|||
|
return K
|
|||
|
|
|||
|
def _fit_inverse_transform(self, X_transformed, X):
|
|||
|
if hasattr(X, "tocsr"):
|
|||
|
raise NotImplementedError(
|
|||
|
"Inverse transform not implemented for sparse matrices!"
|
|||
|
)
|
|||
|
|
|||
|
n_samples = X_transformed.shape[0]
|
|||
|
K = self._get_kernel(X_transformed)
|
|||
|
K.flat[:: n_samples + 1] += self.alpha
|
|||
|
self.dual_coef_ = linalg.solve(K, X, assume_a="pos", overwrite_a=True)
|
|||
|
self.X_transformed_fit_ = X_transformed
|
|||
|
|
|||
|
def fit(self, X, y=None):
|
|||
|
"""Fit the model from data in X.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
|||
|
Training vector, where `n_samples` is the number of samples
|
|||
|
and `n_features` is the number of features.
|
|||
|
|
|||
|
y : Ignored
|
|||
|
Not used, present for API consistency by convention.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
self : object
|
|||
|
Returns the instance itself.
|
|||
|
"""
|
|||
|
self._validate_params()
|
|||
|
|
|||
|
if self.fit_inverse_transform and self.kernel == "precomputed":
|
|||
|
raise ValueError("Cannot fit_inverse_transform with a precomputed kernel.")
|
|||
|
X = self._validate_data(X, accept_sparse="csr", copy=self.copy_X)
|
|||
|
self._centerer = KernelCenterer()
|
|||
|
K = self._get_kernel(X)
|
|||
|
self._fit_transform(K)
|
|||
|
|
|||
|
if self.fit_inverse_transform:
|
|||
|
# no need to use the kernel to transform X, use shortcut expression
|
|||
|
X_transformed = self.eigenvectors_ * np.sqrt(self.eigenvalues_)
|
|||
|
|
|||
|
self._fit_inverse_transform(X_transformed, X)
|
|||
|
|
|||
|
self.X_fit_ = X
|
|||
|
return self
|
|||
|
|
|||
|
def fit_transform(self, X, y=None, **params):
|
|||
|
"""Fit the model from data in X and transform X.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
|||
|
Training vector, where `n_samples` is the number of samples
|
|||
|
and `n_features` is the number of features.
|
|||
|
|
|||
|
y : Ignored
|
|||
|
Not used, present for API consistency by convention.
|
|||
|
|
|||
|
**params : kwargs
|
|||
|
Parameters (keyword arguments) and values passed to
|
|||
|
the fit_transform instance.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
X_new : ndarray of shape (n_samples, n_components)
|
|||
|
Returns the instance itself.
|
|||
|
"""
|
|||
|
self.fit(X, **params)
|
|||
|
|
|||
|
# no need to use the kernel to transform X, use shortcut expression
|
|||
|
X_transformed = self.eigenvectors_ * np.sqrt(self.eigenvalues_)
|
|||
|
|
|||
|
if self.fit_inverse_transform:
|
|||
|
self._fit_inverse_transform(X_transformed, X)
|
|||
|
|
|||
|
return X_transformed
|
|||
|
|
|||
|
def transform(self, X):
|
|||
|
"""Transform X.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
|||
|
Training vector, where `n_samples` is the number of samples
|
|||
|
and `n_features` is the number of features.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
X_new : ndarray of shape (n_samples, n_components)
|
|||
|
Returns the instance itself.
|
|||
|
"""
|
|||
|
check_is_fitted(self)
|
|||
|
X = self._validate_data(X, accept_sparse="csr", reset=False)
|
|||
|
|
|||
|
# Compute centered gram matrix between X and training data X_fit_
|
|||
|
K = self._centerer.transform(self._get_kernel(X, self.X_fit_))
|
|||
|
|
|||
|
# scale eigenvectors (properly account for null-space for dot product)
|
|||
|
non_zeros = np.flatnonzero(self.eigenvalues_)
|
|||
|
scaled_alphas = np.zeros_like(self.eigenvectors_)
|
|||
|
scaled_alphas[:, non_zeros] = self.eigenvectors_[:, non_zeros] / np.sqrt(
|
|||
|
self.eigenvalues_[non_zeros]
|
|||
|
)
|
|||
|
|
|||
|
# Project with a scalar product between K and the scaled eigenvectors
|
|||
|
return np.dot(K, scaled_alphas)
|
|||
|
|
|||
|
def inverse_transform(self, X):
|
|||
|
"""Transform X back to original space.
|
|||
|
|
|||
|
``inverse_transform`` approximates the inverse transformation using
|
|||
|
a learned pre-image. The pre-image is learned by kernel ridge
|
|||
|
regression of the original data on their low-dimensional representation
|
|||
|
vectors.
|
|||
|
|
|||
|
.. note:
|
|||
|
:meth:`~sklearn.decomposition.fit` internally uses a centered
|
|||
|
kernel. As the centered kernel no longer contains the information
|
|||
|
of the mean of kernel features, such information is not taken into
|
|||
|
account in reconstruction.
|
|||
|
|
|||
|
.. note::
|
|||
|
When users want to compute inverse transformation for 'linear'
|
|||
|
kernel, it is recommended that they use
|
|||
|
:class:`~sklearn.decomposition.PCA` instead. Unlike
|
|||
|
:class:`~sklearn.decomposition.PCA`,
|
|||
|
:class:`~sklearn.decomposition.KernelPCA`'s ``inverse_transform``
|
|||
|
does not reconstruct the mean of data when 'linear' kernel is used
|
|||
|
due to the use of centered kernel.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
X : {array-like, sparse matrix} of shape (n_samples, n_components)
|
|||
|
Training vector, where `n_samples` is the number of samples
|
|||
|
and `n_features` is the number of features.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
X_new : ndarray of shape (n_samples, n_features)
|
|||
|
Returns the instance itself.
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
`Bakır, Gökhan H., Jason Weston, and Bernhard Schölkopf.
|
|||
|
"Learning to find pre-images."
|
|||
|
Advances in neural information processing systems 16 (2004): 449-456.
|
|||
|
<https://papers.nips.cc/paper/2003/file/ac1ad983e08ad3304a97e147f522747e-Paper.pdf>`_
|
|||
|
"""
|
|||
|
if not self.fit_inverse_transform:
|
|||
|
raise NotFittedError(
|
|||
|
"The fit_inverse_transform parameter was not"
|
|||
|
" set to True when instantiating and hence "
|
|||
|
"the inverse transform is not available."
|
|||
|
)
|
|||
|
|
|||
|
K = self._get_kernel(X, self.X_transformed_fit_)
|
|||
|
return np.dot(K, self.dual_coef_)
|
|||
|
|
|||
|
def _more_tags(self):
|
|||
|
return {
|
|||
|
"preserves_dtype": [np.float64, np.float32],
|
|||
|
"pairwise": self.kernel == "precomputed",
|
|||
|
}
|
|||
|
|
|||
|
@property
|
|||
|
def _n_features_out(self):
|
|||
|
"""Number of transformed output features."""
|
|||
|
return self.eigenvalues_.shape[0]
|