Intelegentny_Pszczelarz/.venv/Lib/site-packages/tensorflow/python/keras/distribute/distribute_coordinator_utils.py

676 lines
26 KiB
Python
Raw Normal View History

2023-06-19 00:49:18 +02:00
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities related to distribute coordinator.
The module is used only for utils to support legacy TF1 code path involving
distribute coordinator, and is not expected to change in any way. This is
subject to cleanup once TF1 is no longer supported.
TODO(rchao): Remove this module once TF1 is not supported.
"""
import copy
import json
import os
import threading
import time
from tensorflow.core.protobuf import cluster_pb2
from tensorflow.core.protobuf import config_pb2
from tensorflow.python.client import session
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training import monitored_session
from tensorflow.python.training import server_lib
_worker_context = threading.local()
_thread_local = threading.local()
def get_current_worker_context():
"""Returns the current task context."""
try:
return _worker_context.current
except AttributeError:
return None
class _TaskType(object):
PS = "ps"
WORKER = "worker"
CHIEF = "chief"
EVALUATOR = "evaluator"
CLIENT = "client"
def _get_num_workers(cluster_spec):
"""Gets number of workers including chief."""
if not cluster_spec:
return 0
return len(cluster_spec.as_dict().get(_TaskType.WORKER, [])) + len(
cluster_spec.as_dict().get(_TaskType.CHIEF, []))
class _WorkerContext(object):
"""The worker context class.
This context object provides configuration information for each task. One
context manager with a worker context object will be created per
invocation to the `worker_fn` where `get_current_worker_context` can be called
to access the worker context object.
"""
def __init__(self,
strategy,
cluster_spec,
task_type,
task_id,
session_config=None,
rpc_layer="grpc",
worker_barrier=None):
"""Initialize the worker context object.
Args:
strategy: a `DistributionStrategy` object.
cluster_spec: a ClusterSpec object. It can be empty or None in the local
training case.
task_type: a string indicating the role of the corresponding task, such as
"worker" or "ps". It can be None if it is local training or in-graph
replicated training.
task_id: an integer indicating id of the corresponding task. It can be
None if it is local training or in-graph replicated training.
session_config: an optional `tf.compat.v1.ConfigProto` object.
rpc_layer: optional string specifying the RPC protocol for communication
with worker masters. If None or empty, hosts in the `cluster_spec` will
be used directly.
worker_barrier: optional, the barrier object for worker synchronization.
"""
self._strategy = strategy
self._cluster_spec = cluster_spec
self._task_type = task_type
self._task_id = task_id
self._session_config = session_config
self._worker_barrier = worker_barrier
self._rpc_layer = rpc_layer
self._master_target = self._get_master_target()
self._num_workers = _get_num_workers(cluster_spec)
self._is_chief_node = self._is_chief()
def _debug_message(self):
if self._cluster_spec:
return "[cluster_spec: %r, task_type: %r, task_id: %r]" % (
self._cluster_spec, self.task_type, self.task_id)
else:
return "[local]"
def __enter__(self):
old_context = get_current_worker_context()
if old_context:
raise ValueError(
"You cannot run distribute coordinator in a `worker_fn`.\t" +
self._debug_message())
# pylint: disable=protected-access
_worker_context.current = self
def __exit__(self, unused_exception_type, unused_exception_value,
unused_traceback):
# pylint: disable=protected-access
_worker_context.current = None
def _get_master_target(self):
"""Return the master target for a task."""
# If cluster_spec is None or empty, we use local master.
if not self._cluster_spec or self._task_type == _TaskType.EVALUATOR:
return ""
# If task_type is None, then it is in-graph replicated training. In this
# case we use the chief or first worker's master target.
if not self._task_type:
if _TaskType.CHIEF in self._cluster_spec.jobs:
task_type = _TaskType.CHIEF
task_id = 0
else:
assert _TaskType.WORKER in self._cluster_spec.jobs
task_type = _TaskType.WORKER
task_id = 0
else:
task_type = self._task_type
task_id = self._task_id
prefix = ""
if self._rpc_layer:
prefix = self._rpc_layer + "://"
return prefix + self._cluster_spec.job_tasks(task_type)[task_id or 0]
def _is_chief(self):
"""Return whether the task is the chief worker."""
if (not self._cluster_spec or
self._task_type in [_TaskType.CHIEF, _TaskType.EVALUATOR, None]):
return True
# If not local and chief not in the cluster_spec, use the first worker as
# chief.
if (_TaskType.CHIEF not in self._cluster_spec.jobs and
self._task_type == _TaskType.WORKER and self._task_id == 0):
return True
return False
def wait_for_other_workers(self):
"""Waits for other workers to reach the same call to this method.
Raises:
ValueError: if `worker_barrier` is not passed to the __init__ method.
"""
if not self._worker_barrier:
# TODO(yuefengz): we should throw an error in independent worker mode.
return
self._worker_barrier.wait()
def session_creator(self,
scaffold=None,
config=None,
checkpoint_dir=None,
checkpoint_filename_with_path=None,
max_wait_secs=7200):
"""Returns a session creator.
The returned session creator will be configured with the correct master
target and session configs. It will also run either init ops or ready ops
by querying the `strategy` object when `create_session` is called on it.
Args:
scaffold: A `Scaffold` used for gathering or building supportive ops. If
not specified a default one is created. It's used to finalize the graph.
config: `ConfigProto` proto used to configure the session.
checkpoint_dir: A string. Optional path to a directory where to restore
variables.
checkpoint_filename_with_path: Full file name path to the checkpoint file.
Only one of `checkpoint_dir` or `checkpoint_filename_with_path` can be
specified.
max_wait_secs: Maximum time to wait for the session to become available.
Returns:
a descendant of SessionCreator.
"""
if config:
session_config = copy.deepcopy(config)
session_config.MergeFrom(self._session_config)
else:
session_config = self._session_config
if not self._strategy or self._strategy.extended.experimental_should_init:
logging.info("Creating chief session creator with config: %r", config)
return monitored_session.ChiefSessionCreator(
scaffold,
master=self.master_target,
config=session_config,
checkpoint_dir=checkpoint_dir,
checkpoint_filename_with_path=checkpoint_filename_with_path)
else:
logging.info("Creating worker session creator with config: %r", config)
return monitored_session.WorkerSessionCreator(
scaffold,
master=self.master_target,
config=session_config,
max_wait_secs=max_wait_secs)
@property
def session_config(self):
return copy.deepcopy(self._session_config)
@property
def has_barrier(self):
"""Whether the barrier is set or not."""
return self._worker_barrier is not None
@property
def distributed_mode(self):
"""Whether it is distributed training or not."""
return bool(self._cluster_spec) and self._task_type != _TaskType.EVALUATOR
@property
def cluster_spec(self):
"""Returns a copy of the cluster_spec object."""
return copy.deepcopy(self._cluster_spec)
@property
def task_type(self):
"""Returns the role of the corresponding task."""
return self._task_type
@property
def task_id(self):
"""Returns the id or index of the corresponding task."""
return self._task_id
@property
def master_target(self):
"""Returns the session master for the corresponding task to connect to."""
return self._master_target
@property
def is_chief(self):
"""Returns whether the task is a chief node."""
return self._is_chief_node
@property
def num_workers(self):
"""Returns number of workers in the cluster, including chief."""
return self._num_workers
@property
def experimental_should_init(self):
"""Whether to run init ops."""
return self._strategy.extended.experimental_should_init
@property
def should_checkpoint(self):
"""Whether to save checkpoint."""
return self._strategy.extended.should_checkpoint
@property
def should_save_summary(self):
"""Whether to save summaries."""
return self._strategy.extended.should_save_summary
def _run_single_worker(worker_fn,
strategy,
cluster_spec,
task_type,
task_id,
session_config,
rpc_layer="",
worker_barrier=None,
coord=None):
"""Runs a single worker by calling `worker_fn` under context."""
session_config = copy.deepcopy(session_config)
strategy = copy.deepcopy(strategy)
# If there is an EVALUATOR task, we run single-machine eval on that task.
if task_type == _TaskType.EVALUATOR:
# It is possible to not have a strategy object for EVALUATOR task.
if strategy:
strategy.configure(session_config)
else:
assert strategy
strategy.configure(session_config, cluster_spec, task_type, task_id)
context = _WorkerContext(
strategy,
cluster_spec,
task_type,
task_id,
session_config=session_config,
rpc_layer=rpc_layer,
worker_barrier=worker_barrier)
with context:
if coord:
with coord.stop_on_exception():
return worker_fn(strategy)
else:
return worker_fn(strategy)
def _split_cluster_for_evaluator(cluster_spec, task_type):
"""Split the cluster for evaluator since it needn't talk to other tasks."""
# Splitting the cluster is important to prevent the evaluator from talking to
# other tasks in the cluster. Since we allow evaluator not to use
# distribution strategies and as a result ops in the evaluator task may have
# unspecified devices. Those ops may end up on other tasks if we don't split
# the cluster.
# Note: if you bypass distribute coordinator and bring the cluster yourself,
# you can equivalently set device filters to split clusters. This is already
# done by distribution strategy's `update_config_proto` method.
new_cluster_spec = normalize_cluster_spec(cluster_spec).as_dict()
if task_type == _TaskType.EVALUATOR:
assert _TaskType.EVALUATOR in new_cluster_spec
new_cluster_spec = {
_TaskType.EVALUATOR: new_cluster_spec[_TaskType.EVALUATOR]
}
else:
new_cluster_spec.pop(_TaskType.EVALUATOR, None)
return normalize_cluster_spec(new_cluster_spec)
def _run_std_server(cluster_spec=None,
task_type=None,
task_id=None,
session_config=None,
rpc_layer=None,
environment=None):
"""Runs a standard server."""
# Check if the Server is already running. If so, assert that no configuration
# options have changed, and return the existing Server. This allows us to
# call `run_distribute_coordinator` multiple times.
if getattr(_thread_local, "server", None) is not None:
assert _thread_local.cluster_spec == cluster_spec
assert _thread_local.task_type == task_type
assert _thread_local.task_id == task_id
assert _thread_local.session_config_str == repr(session_config)
assert _thread_local.rpc_layer == rpc_layer
assert _thread_local.environment == environment
return _thread_local.server
else:
# This method is not thread-safe.
_thread_local.server_started = True
_thread_local.cluster_spec = cluster_spec
_thread_local.task_type = task_type
_thread_local.task_id = task_id
_thread_local.session_config_str = repr(session_config)
_thread_local.rpc_layer = rpc_layer
_thread_local.environment = environment
assert cluster_spec
target = cluster_spec.task_address(task_type, task_id)
if rpc_layer:
target = rpc_layer + "://" + target
class _FakeServer(object):
"""A fake server that runs a master session."""
def start(self):
# A tensorflow server starts when a remote session is created.
logging.info(
"Creating a remote session to start a TensorFlow server, "
"target = %r, session_config=%r", target, session_config)
session.Session(target=target, config=session_config)
def join(self):
while True:
time.sleep(5)
if environment == "google":
server = _FakeServer()
else:
if session_config:
logging.info(
"Starting standard TensorFlow server, target = %r, session_config= "
"%r", target, session_config)
else:
logging.info("Starting standard TensorFlow server, target = %r", target)
cluster_spec = _split_cluster_for_evaluator(cluster_spec, task_type)
server = server_lib.Server(
cluster_spec,
job_name=task_type,
task_index=task_id,
config=session_config,
protocol=rpc_layer)
server.start()
_thread_local.server = server
return server
def _configure_session_config_for_std_servers(strategy, eval_strategy,
session_config, cluster_spec,
task_type, task_id):
# pylint: disable=g-doc-args
"""Call strategy's `configure` to mutate the session_config.
The session_config is currently needed as default config for a TensorFlow
server. In the future, we should be able to remove this method and only pass
the session config to a client session.
"""
if task_type == _TaskType.EVALUATOR:
if eval_strategy:
eval_strategy.configure(session_config=session_config)
else:
# The strategy may be shared in standalone client mode.
strategy = copy.deepcopy(strategy)
strategy.configure(
session_config=session_config,
cluster_spec=cluster_spec,
task_type=task_type,
task_id=task_id)
# Remove the device filters specific to the strategy, so that the
# TensorFlow server brought up with one strategy can be used by other
# strategies. The device filters can be set in the client side as well.
del session_config.device_filters[:]
# TODO(yuefengz): propagate cluster_spec in the STANDALONE_CLIENT mode.
# TODO(yuefengz): we may need a smart way to figure out whether the current task
# is the special task when we support cluster_spec propagation.
def run_distribute_coordinator(worker_fn,
strategy,
eval_fn=None,
eval_strategy=None,
cluster_spec=None,
task_type=None,
task_id=None,
session_config=None,
rpc_layer="grpc"):
"""Runs the coordinator for distributed TensorFlow.
This function runs a split coordinator for distributed TensorFlow in its
default mode, i.e the STANDALONE_CLIENT mode. Given a `cluster_spec`
specifying server addresses and their roles in a cluster, this coordinator
will figure out how to set them up, give the underlying function the right
targets for master sessions via a scope object and coordinate their training.
The cluster consisting of standard servers needs to be brought up either with
the standard server binary or with a binary running distribute coordinator
with `task_type` set to non-client type which will then turn into standard
servers.
In addition to be the distribute coordinator, this is also the source of
configurations for each job in the distributed training. As there are multiple
ways to configure a distributed TensorFlow cluster, its context object
provides these configurations so that users or higher-level APIs don't have to
figure out the configuration for each job by themselves.
In the between-graph replicated training, this coordinator will create
multiple threads and each calls the `worker_fn` which is supposed to create
its own graph and connect to one worker master given by its context object. In
the in-graph replicated training, it has only one thread calling this
`worker_fn`.
Another mode is the INDEPENDENT_WORKER mode where each server runs a
distribute coordinator which will start a standard server and optionally runs
`worker_fn` depending whether it is between-graph training or in-graph
replicated training.
The `strategy` object is expected to be a DistributionStrategy object which
has implemented methods needed by distributed coordinator such as
`configure(session_config, cluster_spec, task_type, task_id)` which configures
the strategy object for a specific task and `experimental_should_init`
property which instructs the distribute coordinator whether to run init ops
for a task. The distribute coordinator will make a copy of the `strategy`
object, call its `configure` method and pass it to `worker_fn` as an argument.
The `worker_fn` defines the training logic and is called under its own
worker context which can be accessed to via `get_current_worker_context`. A
worker context provides access to configurations for each task, e.g. the
task_type, task_id, master target and so on. Since `worker_fn` will be called
in a thread and possibly multiple times, caller should be careful when it
accesses global data. For example, it is unsafe to define flags in a
`worker_fn` or to define different environment variables for different
`worker_fn`s.
The `worker_fn` for the between-graph replication is defined as if there is
only one worker corresponding to the `worker_fn` and possibly ps jobs. For
example, when training with parameter servers, it assigns variables to
parameter servers and all other operations to that worker. In the in-graph
replication case, the `worker_fn` has to define operations for all worker
jobs. Using a distribution strategy can simplify the `worker_fn` by not having
to worry about the replication and device assignment of variables and
operations.
This method is intended to be invoked by high-level APIs so that users don't
have to explicitly call it to run this coordinator. For those who don't use
high-level APIs, to change a program to use this coordinator, wrap everything
in a the program after global data definitions such as commandline flag
definition into the `worker_fn` and get task-specific configurations from
the worker context.
The `cluster_spec` can be either passed by the argument or parsed from the
"TF_CONFIG" environment variable. Example of a TF_CONFIG:
```
cluster = {'chief': ['host0:2222'],
'ps': ['host1:2222', 'host2:2222'],
'worker': ['host3:2222', 'host4:2222', 'host5:2222']}
os.environ['TF_CONFIG'] = json.dumps({'cluster': cluster})
```
If `cluster_spec` is not given in any format, it becomes local training and
this coordinator will connect to a local session.
For evaluation, if "evaluator" exists in the cluster_spec, a separate thread
will be created to call `eval_fn` with its `task_type` set to "evaluator". If
`eval_fn` is not defined, fall back to `worker_fn`. This implies that
evaluation will be done on a single machine if there is an "evaluator" task.
If "evaluator" doesn't exist in the cluster_spec, it entirely depends on the
`worker_fn` for how to do evaluation.
Args:
worker_fn: the function to be called. The function should accept a
`strategy` object and will be given access to a context object via a
context manager scope.
strategy: a DistributionStrategy object specifying whether it should run
between-graph replicated training or not, whether to run init ops, etc.
This object will also be configured given `session_config`,
`cluster_spec`, `task_type` and `task_id`.
eval_fn: optional function for "evaluator" task. If `eval_fn` is not passed
in but a "evaluator" task is found in the `cluster_spec`, the `worker_fn`
will be used for this task.
eval_strategy: optional DistributionStrategy object for "evaluator" task.
cluster_spec: a dict, ClusterDef or ClusterSpec specifying servers and roles
in a cluster. If not set or empty, fall back to local training.
task_type: the current task type, optional if this is a client.
task_id: the current task id, optional if this is a client.
session_config: an optional `tf.compat.v1.ConfigProto` object which will be
passed to `strategy`'s `configure` method and used to create a session.
rpc_layer: optional string, the protocol for RPC, e.g. "grpc".
Raises:
ValueError: if `cluster_spec` is supplied but not a dict or a ClusterDef or
a ClusterSpec.
Returns:
In the client job, return the value returned by `worker_fn` if
it is in-graph replication or INDEPENDENT_WORKER mode; return None
otherwise.
"""
tf_config = json.loads(os.environ.get("TF_CONFIG", "{}"))
rpc_layer = tf_config.get("rpc_layer", rpc_layer)
environment = tf_config.get("environment", None)
if not cluster_spec:
cluster_spec = tf_config.get("cluster", {})
task_env = tf_config.get("task", {})
if task_env:
task_type = task_env.get("type", task_type)
task_id = int(task_env.get("index", task_id))
if cluster_spec:
# TODO(yuefengz): validate cluster_spec.
cluster_spec = normalize_cluster_spec(cluster_spec)
elif hasattr(strategy.extended, "_cluster_resolver"):
cluster_resolver = strategy.extended._cluster_resolver # pylint: disable=protected-access
task_type = cluster_resolver.task_type
task_id = cluster_resolver.task_id
rpc_layer = cluster_resolver.rpc_layer or rpc_layer
environment = cluster_resolver.environment
cluster_spec = cluster_resolver.cluster_spec()
# Setting the session config is necessary for some strategies such as
# CollectiveAllReduceStrategy.
session_config = session_config or config_pb2.ConfigProto(
allow_soft_placement=True)
if cluster_spec:
logging.info(
"Running Distribute Coordinator with cluster_spec = %r, "
"task_type = %r, task_id = %r, environment = %r, rpc_layer = %r",
cluster_spec.as_dict(), task_type, task_id, environment, rpc_layer)
if not cluster_spec:
# `mode` is ignored in the local case.
logging.info("Running local Distribute Coordinator.")
_run_single_worker(worker_fn, strategy, None, None, None, session_config,
rpc_layer)
if eval_fn:
_run_single_worker(eval_fn, eval_strategy, None, None, None,
session_config, rpc_layer)
else:
logging.warning("Skipped evaluation since `eval_fn` is not passed in.")
else:
if not eval_fn:
logging.warning("`eval_fn` is not passed in. The `worker_fn` will be "
"used if an \"evaluator\" task exists in the cluster.")
eval_fn = eval_fn or worker_fn
if not eval_strategy:
logging.warning("`eval_strategy` is not passed in. No distribution "
"strategy will be used for evaluation.")
# Every one starts a standard server, get session config from `configure`
# method.
_configure_session_config_for_std_servers(strategy, eval_strategy,
session_config, cluster_spec,
task_type, task_id)
if (task_type != _TaskType.EVALUATOR and
not getattr(strategy.extended, "_std_server_started", False)):
# Right now, with eager mode, context is configured with a std server at
# the very beginning while with graph mode the std server is started when
# distribute coordinator is called. We should consolidate these two paths.
server = _run_std_server(
cluster_spec=cluster_spec,
task_type=task_type,
task_id=task_id,
session_config=session_config,
rpc_layer=rpc_layer,
environment=environment)
if task_type in [_TaskType.CHIEF, _TaskType.WORKER]:
if strategy.extended.experimental_between_graph:
# All jobs run `worker_fn` if between-graph.
return _run_single_worker(worker_fn, strategy, cluster_spec, task_type,
task_id, session_config, rpc_layer)
else:
# Only one node runs `worker_fn` if in-graph.
context = _WorkerContext(strategy, cluster_spec, task_type, task_id)
if context.is_chief:
return _run_single_worker(worker_fn, strategy, cluster_spec, None,
None, session_config, rpc_layer)
else:
server.join()
elif task_type == _TaskType.EVALUATOR:
return _run_single_worker(eval_fn, eval_strategy, cluster_spec, task_type,
task_id, session_config, rpc_layer)
else:
if task_type != _TaskType.PS:
raise ValueError("Unexpected task_type: %r" % task_type)
server.join()
def normalize_cluster_spec(cluster_spec):
"""Makes `cluster_spec` into a `ClusterSpec` object.
Args:
cluster_spec: a dict, ClusterDef or ClusterSpec object specifying the
cluster configurations.
Returns:
a `ClusterSpec` object.
Raises:
ValueError: if `cluster_spec` is not a dict or a `ClusterSpec` or a
`ClusterDef`.
"""
if isinstance(cluster_spec, (dict, cluster_pb2.ClusterDef)):
return server_lib.ClusterSpec(cluster_spec)
elif not isinstance(cluster_spec, server_lib.ClusterSpec):
raise ValueError(
"`cluster_spec' should be dict or a `tf.train.ClusterSpec` or a "
"`tf.train.ClusterDef` object")
return cluster_spec