Intelegentny_Pszczelarz/.venv/Lib/site-packages/tensorflow/python/summary/summary.py

856 lines
37 KiB
Python
Raw Normal View History

2023-06-19 00:49:18 +02:00
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Operations for writing summary data, for use in analysis and visualization.
See the [Summaries and
TensorBoard](https://www.tensorflow.org/guide/summaries_and_tensorboard) guide.
"""
import contextlib
import warnings
from google.protobuf import json_format as _json_format
# exports Summary, SummaryDescription, Event, TaggedRunMetadata, SessionLog
# pylint: disable=unused-import, g-importing-member
from tensorflow.core.framework.summary_pb2 import Summary
from tensorflow.core.framework.summary_pb2 import SummaryDescription
from tensorflow.core.framework.summary_pb2 import SummaryMetadata as _SummaryMetadata # pylint: enable=unused-import
from tensorflow.core.util.event_pb2 import Event
from tensorflow.core.util.event_pb2 import SessionLog
from tensorflow.core.util.event_pb2 import TaggedRunMetadata
# pylint: enable=unused-import
from tensorflow.python.distribute import summary_op_util as _distribute_summary_op_util
from tensorflow.python.eager import context as _context
from tensorflow.python.framework import constant_op as _constant_op
from tensorflow.python.framework import dtypes as _dtypes
from tensorflow.python.framework import ops as _ops
from tensorflow.python.ops import array_ops as _array_ops
from tensorflow.python.ops import gen_logging_ops as _gen_logging_ops
from tensorflow.python.ops import gen_summary_ops as _gen_summary_ops # pylint: disable=unused-import
from tensorflow.python.ops import summary_op_util as _summary_op_util
from tensorflow.python.ops import summary_ops_v2 as _summary_ops_v2
# exports FileWriter, FileWriterCache
# pylint: disable=unused-import
from tensorflow.python.summary.writer.writer import FileWriter
from tensorflow.python.summary.writer.writer_cache import FileWriterCache
# pylint: enable=unused-import
from tensorflow.python.training import training_util as _training_util
from tensorflow.python.util import compat as _compat
from tensorflow.python.util.tf_export import tf_export
@tf_export(v1=['summary.scalar'])
def scalar(name, tensor, collections=None, family=None):
"""Outputs a `Summary` protocol buffer containing a single scalar value.
The generated Summary has a Tensor.proto containing the input Tensor.
Args:
name: A name for the generated node. Will also serve as the series name in
TensorBoard.
tensor: A real numeric Tensor containing a single value.
collections: Optional list of graph collections keys. The new summary op is
added to these collections. Defaults to `[GraphKeys.SUMMARIES]`.
family: Optional; if provided, used as the prefix of the summary tag name,
which controls the tab name used for display on Tensorboard.
Returns:
A scalar `Tensor` of type `string`. Which contains a `Summary` protobuf.
Raises:
ValueError: If tensor has the wrong shape or type.
@compatibility(TF2)
For compatibility purposes, when invoked in TF2 where the outermost context is
eager mode, this API will check if there is a suitable TF2 summary writer
context available, and if so will forward this call to that writer instead. A
"suitable" writer context means that the writer is set as the default writer,
and there is an associated non-empty value for `step` (see
`tf.summary.SummaryWriter.as_default`, `tf.summary.experimental.set_step` or
alternatively `tf.compat.v1.train.create_global_step`). For the forwarded
call, the arguments here will be passed to the TF2 implementation of
`tf.summary.scalar`, and the return value will be an empty bytestring tensor,
to avoid duplicate summary writing. This forwarding is best-effort and not all
arguments will be preserved.
To migrate to TF2, please use `tf.summary.scalar` instead. Please check
[Migrating tf.summary usage to
TF 2.0](https://www.tensorflow.org/tensorboard/migrate#in_tf_1x) for concrete
steps for migration. `tf.summary.scalar` can also log training metrics in
Keras, you can check [Logging training metrics in
Keras](https://www.tensorflow.org/tensorboard/scalars_and_keras) for detials.
#### How to Map Arguments
| TF1 Arg Name | TF2 Arg Name | Note |
| :------------ | :-------------- | :------------------------------------- |
| `name` | `name` | - |
| `tensor` | `data` | - |
| - | `step` | Explicit int64-castable monotonic step |
: : : value. If omitted, this defaults to :
: : : `tf.summary.experimental.get_step()`. :
| `collections` | Not Supported | - |
| `family` | Removed | Please use `tf.name_scope` instead to |
: : : manage summary name prefix. :
| - | `description` | Optional long-form `str` description |
: : : for the summary. Markdown is supported.:
: : : Defaults to empty. :
@end_compatibility
"""
if _distribute_summary_op_util.skip_summary():
return _constant_op.constant('')
# Special case: invoke v2 op for TF2 users who have a v2 writer.
if _should_invoke_v2_op():
# Defer the import to happen inside the symbol to prevent breakage due to
# missing dependency.
from tensorboard.summary.v2 import scalar as scalar_v2 # pylint: disable=g-import-not-at-top
with _compat_summary_scope(name, family) as tag:
scalar_v2(name=tag, data=tensor, step=_get_step_for_v2())
# Return an empty Tensor, which will be acceptable as an input to the
# `tf.compat.v1.summary.merge()` API.
return _constant_op.constant(b'')
# Fall back to legacy v1 scalar implementation.
with _summary_op_util.summary_scope(
name, family, values=[tensor]) as (tag, scope):
val = _gen_logging_ops.scalar_summary(tags=tag, values=tensor, name=scope)
_summary_op_util.collect(val, collections, [_ops.GraphKeys.SUMMARIES])
return val
@tf_export(v1=['summary.image'])
def image(name, tensor, max_outputs=3, collections=None, family=None):
"""Outputs a `Summary` protocol buffer with images.
The summary has up to `max_outputs` summary values containing images. The
images are built from `tensor` which must be 4-D with shape `[batch_size,
height, width, channels]` and where `channels` can be:
* 1: `tensor` is interpreted as Grayscale.
* 3: `tensor` is interpreted as RGB.
* 4: `tensor` is interpreted as RGBA.
The images have the same number of channels as the input tensor. For float
input, the values are normalized one image at a time to fit in the range
`[0, 255]`. `uint8` values are unchanged. The op uses two different
normalization algorithms:
* If the input values are all positive, they are rescaled so the largest one
is 255.
* If any input value is negative, the values are shifted so input value 0.0
is at 127. They are then rescaled so that either the smallest value is 0,
or the largest one is 255.
The `tag` in the outputted Summary.Value protobufs is generated based on the
name, with a suffix depending on the max_outputs setting:
* If `max_outputs` is 1, the summary value tag is '*name*/image'.
* If `max_outputs` is greater than 1, the summary value tags are
generated sequentially as '*name*/image/0', '*name*/image/1', etc.
Args:
name: A name for the generated node. Will also serve as a series name in
TensorBoard.
tensor: A 4-D `uint8` or `float32` `Tensor` of shape `[batch_size, height,
width, channels]` where `channels` is 1, 3, or 4.
max_outputs: Max number of batch elements to generate images for.
collections: Optional list of ops.GraphKeys. The collections to add the
summary to. Defaults to [_ops.GraphKeys.SUMMARIES]
family: Optional; if provided, used as the prefix of the summary tag name,
which controls the tab name used for display on Tensorboard.
Returns:
A scalar `Tensor` of type `string`. The serialized `Summary` protocol
buffer.
@compatibility(TF2)
For compatibility purposes, when invoked in TF2 where the outermost context is
eager mode, this API will check if there is a suitable TF2 summary writer
context available, and if so will forward this call to that writer instead. A
"suitable" writer context means that the writer is set as the default writer,
and there is an associated non-empty value for `step` (see
`tf.summary.SummaryWriter.as_default`, `tf.summary.experimental.set_step` or
alternatively `tf.compat.v1.train.create_global_step`). For the forwarded
call, the arguments here will be passed to the TF2 implementation of
`tf.summary.image`, and the return value will be an empty bytestring tensor,
to avoid duplicate summary writing. This forwarding is best-effort and not all
arguments will be preserved. Additionally:
* The TF2 op does not do any of the normalization steps described above.
Rather than rescaling data that's outside the expected range, it simply
clips it.
* The TF2 op just outputs the data under a single tag that contains multiple
samples, rather than multiple tags (i.e. no "/0" or "/1" suffixes).
To migrate to TF2, please use `tf.summary.image` instead. Please check
[Migrating tf.summary usage to
TF 2.0](https://www.tensorflow.org/tensorboard/migrate#in_tf_1x) for concrete
steps for migration.
#### How to Map Arguments
| TF1 Arg Name | TF2 Arg Name | Note |
| :------------ | :-------------- | :------------------------------------- |
| `name` | `name` | - |
| `tensor` | `data` | - |
| - | `step` | Explicit int64-castable monotonic step |
: : : value. If omitted, this defaults to :
: : : `tf.summary.experimental.get_step()`. :
| `max_outputs` | `max_outputs` | - |
| `collections` | Not Supported | - |
| `family` | Removed | Please use `tf.name_scope` instead |
: : : to manage summary name prefix. :
| - | `description` | Optional long-form `str` description |
: : : for the summary. Markdown is supported.:
: : : Defaults to empty. :
@end_compatibility
"""
if _distribute_summary_op_util.skip_summary():
return _constant_op.constant('')
# Special case: invoke v2 op for TF2 users who have a v2 writer.
if _should_invoke_v2_op():
# Defer the import to happen inside the symbol to prevent breakage due to
# missing dependency.
from tensorboard.summary.v2 import image as image_v2 # pylint: disable=g-import-not-at-top
with _compat_summary_scope(name, family) as tag:
image_v2(
name=tag,
data=tensor,
step=_get_step_for_v2(),
max_outputs=max_outputs)
# Return an empty Tensor, which will be acceptable as an input to the
# `tf.compat.v1.summary.merge()` API.
return _constant_op.constant(b'')
# Fall back to legacy v1 image implementation.
with _summary_op_util.summary_scope(
name, family, values=[tensor]) as (tag, scope):
val = _gen_logging_ops.image_summary(
tag=tag, tensor=tensor, max_images=max_outputs, name=scope)
_summary_op_util.collect(val, collections, [_ops.GraphKeys.SUMMARIES])
return val
@tf_export(v1=['summary.histogram'])
def histogram(name, values, collections=None, family=None):
# pylint: disable=line-too-long
"""Outputs a `Summary` protocol buffer with a histogram.
Adding a histogram summary makes it possible to visualize your data's
distribution in TensorBoard. You can see a detailed explanation of the
TensorBoard histogram dashboard
[here](https://www.tensorflow.org/get_started/tensorboard_histograms).
The generated
[`Summary`](https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto)
has one summary value containing a histogram for `values`.
This op reports an `InvalidArgument` error if any value is not finite.
Args:
name: A name for the generated node. Will also serve as a series name in
TensorBoard.
values: A real numeric `Tensor`. Any shape. Values to use to
build the histogram.
collections: Optional list of graph collections keys. The new summary op is
added to these collections. Defaults to `[GraphKeys.SUMMARIES]`.
family: Optional; if provided, used as the prefix of the summary tag name,
which controls the tab name used for display on Tensorboard.
Returns:
A scalar `Tensor` of type `string`. The serialized `Summary` protocol
buffer.
@compatibility(TF2)
For compatibility purposes, when invoked in TF2 where the outermost context is
eager mode, this API will check if there is a suitable TF2 summary writer
context available, and if so will forward this call to that writer instead. A
"suitable" writer context means that the writer is set as the default writer,
and there is an associated non-empty value for `step` (see
`tf.summary.SummaryWriter.as_default`, `tf.summary.experimental.set_step` or
alternatively `tf.compat.v1.train.create_global_step`). For the forwarded
call, the arguments here will be passed to the TF2 implementation of
`tf.summary.histogram`, and the return value will be an empty bytestring
tensor, to avoid duplicate summary writing. This forwarding is best-effort and
not all arguments will be preserved.
To migrate to TF2, please use `tf.summary.histogram` instead. Please check
[Migrating tf.summary usage to
TF 2.0](https://www.tensorflow.org/tensorboard/migrate#in_tf_1x) for concrete
steps for migration.
#### How to Map Arguments
| TF1 Arg Name | TF2 Arg Name | Note |
| :------------ | :-------------- | :------------------------------------- |
| `name` | `name` | - |
| `values` | `data` | - |
| - | `step` | Explicit int64-castable monotonic step |
: : : value. If omitted, this defaults to :
: : : `tf.summary.experimental.get_step()` :
| - | `buckets` | Optional positive `int` specifying |
: : : the histogram bucket number. :
| `collections` | Not Supported | - |
| `family` | Removed | Please use `tf.name_scope` instead |
: : : to manage summary name prefix. :
| - | `description` | Optional long-form `str` description |
: : : for the summary. Markdown is supported.:
: : : Defaults to empty. :
@end_compatibility
"""
if _distribute_summary_op_util.skip_summary():
return _constant_op.constant('')
# Special case: invoke v2 op for TF2 users who have a v2 writer.
if _should_invoke_v2_op():
# Defer the import to happen inside the symbol to prevent breakage due to
# missing dependency.
from tensorboard.summary.v2 import histogram as histogram_v2 # pylint: disable=g-import-not-at-top
with _compat_summary_scope(name, family) as tag:
histogram_v2(name=tag, data=values, step=_get_step_for_v2())
# Return an empty Tensor, which will be acceptable as an input to the
# `tf.compat.v1.summary.merge()` API.
return _constant_op.constant(b'')
# Fall back to legacy v1 histogram implementation.
with _summary_op_util.summary_scope(
name, family, values=[values],
default_name='HistogramSummary') as (tag, scope):
val = _gen_logging_ops.histogram_summary(
tag=tag, values=values, name=scope)
_summary_op_util.collect(val, collections, [_ops.GraphKeys.SUMMARIES])
return val
@tf_export(v1=['summary.audio'])
def audio(name, tensor, sample_rate, max_outputs=3, collections=None,
family=None):
# pylint: disable=line-too-long
"""Outputs a `Summary` protocol buffer with audio.
The summary has up to `max_outputs` summary values containing audio. The
audio is built from `tensor` which must be 3-D with shape `[batch_size,
frames, channels]` or 2-D with shape `[batch_size, frames]`. The values are
assumed to be in the range of `[-1.0, 1.0]` with a sample rate of
`sample_rate`.
The `tag` in the outputted Summary.Value protobufs is generated based on the
name, with a suffix depending on the max_outputs setting:
* If `max_outputs` is 1, the summary value tag is '*name*/audio'.
* If `max_outputs` is greater than 1, the summary value tags are
generated sequentially as '*name*/audio/0', '*name*/audio/1', etc
Args:
name: A name for the generated node. Will also serve as a series name in
TensorBoard.
tensor: A 3-D `float32` `Tensor` of shape `[batch_size, frames, channels]`
or a 2-D `float32` `Tensor` of shape `[batch_size, frames]`.
sample_rate: A Scalar `float32` `Tensor` indicating the sample rate of the
signal in hertz.
max_outputs: Max number of batch elements to generate audio for.
collections: Optional list of ops.GraphKeys. The collections to add the
summary to. Defaults to [_ops.GraphKeys.SUMMARIES]
family: Optional; if provided, used as the prefix of the summary tag name,
which controls the tab name used for display on Tensorboard.
Returns:
A scalar `Tensor` of type `string`. The serialized `Summary` protocol
buffer.
@compatibility(TF2)
For compatibility purposes, when invoked in TF2 where the outermost context is
eager mode, this API will check if there is a suitable TF2 summary writer
context available, and if so will forward this call to that writer instead. A
"suitable" writer context means that the writer is set as the default writer,
and there is an associated non-empty value for `step` (see
`tf.summary.SummaryWriter.as_default`, `tf.summary.experimental.set_step` or
alternatively `tf.compat.v1.train.create_global_step`). For the forwarded
call, the arguments here will be passed to the TF2 implementation of
`tf.summary.audio`, and the return value will be an empty bytestring tensor,
to avoid duplicate summary writing. This forwarding is best-effort and not all
arguments will be preserved. Additionally:
* The TF2 op just outputs the data under a single tag that contains multiple
samples, rather than multiple tags (i.e. no "/0" or "/1" suffixes).
To migrate to TF2, please use `tf.summary.audio` instead. Please check
[Migrating tf.summary usage to
TF 2.0](https://www.tensorflow.org/tensorboard/migrate#in_tf_1x) for concrete
steps for migration.
#### How to Map Arguments
| TF1 Arg Name | TF2 Arg Name | Note |
| :------------ | :-------------- | :------------------------------------- |
| `name` | `name` | - |
| `tensor` | `data` | Input for this argument now must be |
: : : three-dimensional `[k, t, c]`, where :
: : : `k` is the number of audio clips, `t` :
: : : is the number of frames, and `c` is :
: : : the number of channels. Two-dimensional:
: : : input is no longer supported. :
| `sample_rate` | `sample_rate` | - |
| - | `step` | Explicit int64-castable monotonic step |
: : : value. If omitted, this defaults to :
: : : `tf.summary.experimental.get_step()`. :
| `max_outputs` | `max_outputs` | - |
| `collections` | Not Supported | - |
| `family` | Removed | Please use `tf.name_scope` instead to |
: : : manage summary name prefix. :
| - | `encoding` | Optional constant str for the desired |
: : : encoding. Check the docs for :
: : : `tf.summary.audio` for latest supported:
: : : audio formats. :
| - | `description` | Optional long-form `str` description |
: : : for the summary. Markdown is supported.:
: : : Defaults to empty. :
@end_compatibility
"""
if _distribute_summary_op_util.skip_summary():
return _constant_op.constant('')
# Special case: invoke v2 op for TF2 users who have a v2 writer.
if _should_invoke_v2_op():
# Defer the import to happen inside the symbol to prevent breakage due to
# missing dependency.
from tensorboard.summary.v2 import audio as audio_v2 # pylint: disable=g-import-not-at-top
if tensor.shape.rank == 2:
# TF2 op requires 3-D tensor, add the `channels` dimension.
tensor = _array_ops.expand_dims_v2(tensor, axis=2)
with _compat_summary_scope(name, family) as tag:
audio_v2(
name=tag,
data=tensor,
sample_rate=sample_rate,
step=_get_step_for_v2(),
max_outputs=max_outputs,
)
# Return an empty Tensor, which will be acceptable as an input to the
# `tf.compat.v1.summary.merge()` API.
return _constant_op.constant(b'')
# Fall back to legacy v1 audio implementation.
with _summary_op_util.summary_scope(
name, family=family, values=[tensor]) as (tag, scope):
sample_rate = _ops.convert_to_tensor(
sample_rate, dtype=_dtypes.float32, name='sample_rate')
val = _gen_logging_ops.audio_summary_v2(
tag=tag, tensor=tensor, max_outputs=max_outputs,
sample_rate=sample_rate, name=scope)
_summary_op_util.collect(val, collections, [_ops.GraphKeys.SUMMARIES])
return val
@tf_export(v1=['summary.text'])
def text(name, tensor, collections=None):
"""Summarizes textual data.
Text data summarized via this plugin will be visible in the Text Dashboard
in TensorBoard. The standard TensorBoard Text Dashboard will render markdown
in the strings, and will automatically organize 1d and 2d tensors into tables.
If a tensor with more than 2 dimensions is provided, a 2d subarray will be
displayed along with a warning message. (Note that this behavior is not
intrinsic to the text summary api, but rather to the default TensorBoard text
plugin.)
Args:
name: A name for the generated node. Will also serve as a series name in
TensorBoard.
tensor: a string-type Tensor to summarize.
collections: Optional list of ops.GraphKeys. The collections to add the
summary to. Defaults to [_ops.GraphKeys.SUMMARIES]
Returns:
A TensorSummary op that is configured so that TensorBoard will recognize
that it contains textual data. The TensorSummary is a scalar `Tensor` of
type `string` which contains `Summary` protobufs.
Raises:
ValueError: If tensor has the wrong type.
@compatibility(TF2)
For compatibility purposes, when invoked in TF2 where the outermost context is
eager mode, this API will check if there is a suitable TF2 summary writer
context available, and if so will forward this call to that writer instead. A
"suitable" writer context means that the writer is set as the default writer,
and there is an associated non-empty value for `step` (see
`tf.summary.SummaryWriter.as_default`, `tf.summary.experimental.set_step` or
alternatively `tf.compat.v1.train.create_global_step`). For the forwarded
call, the arguments here will be passed to the TF2 implementation of
`tf.summary.text`, and the return value will be an empty bytestring tensor, to
avoid duplicate summary writing. This forwarding is best-effort and not all
arguments will be preserved.
To migrate to TF2, please use `tf.summary.text` instead. Please check
[Migrating tf.summary usage to
TF 2.0](https://www.tensorflow.org/tensorboard/migrate#in_tf_1x) for concrete
steps for migration.
#### How to Map Arguments
| TF1 Arg Name | TF2 Arg Name | Note |
| :------------ | :-------------- | :------------------------------------- |
| `name` | `name` | - |
| `tensor` | `data` | - |
| - | `step` | Explicit int64-castable monotonic step |
: : : value. If omitted, this defaults to :
: : : `tf.summary.experimental.get_step()`. :
| `collections` | Not Supported | - |
| - | `description` | Optional long-form `str` description |
: : : for the summary. Markdown is supported.:
: : : Defaults to empty. :
@end_compatibility
"""
if tensor.dtype != _dtypes.string:
raise ValueError('Expected tensor %s to have dtype string, got %s' %
(tensor.name, tensor.dtype))
# Special case: invoke v2 op for TF2 users who have a v2 writer.
if _should_invoke_v2_op():
# `skip_summary` check for v1 op case is done in `tensor_summary`.
if _distribute_summary_op_util.skip_summary():
return _constant_op.constant('')
# Defer the import to happen inside the symbol to prevent breakage due to
# missing dependency.
from tensorboard.summary.v2 import text as text_v2 # pylint: disable=g-import-not-at-top
text_v2(name=name, data=tensor, step=_get_step_for_v2())
# Return an empty Tensor, which will be acceptable as an input to the
# `tf.compat.v1.summary.merge()` API.
return _constant_op.constant(b'')
# Fall back to legacy v1 text implementation.
summary_metadata = _SummaryMetadata(
plugin_data=_SummaryMetadata.PluginData(plugin_name='text'))
t_summary = tensor_summary(
name=name,
tensor=tensor,
summary_metadata=summary_metadata,
collections=collections)
return t_summary
@tf_export(v1=['summary.tensor_summary'])
def tensor_summary(name,
tensor,
summary_description=None,
collections=None,
summary_metadata=None,
family=None,
display_name=None):
"""Outputs a `Summary` protocol buffer with a serialized tensor.proto.
Args:
name: A name for the generated node. If display_name is not set, it will
also serve as the tag name in TensorBoard. (In that case, the tag
name will inherit tf name scopes.)
tensor: A tensor of any type and shape to serialize.
summary_description: A long description of the summary sequence. Markdown
is supported.
collections: Optional list of graph collections keys. The new summary op is
added to these collections. Defaults to `[GraphKeys.SUMMARIES]`.
summary_metadata: Optional SummaryMetadata proto (which describes which
plugins may use the summary value).
family: Optional; if provided, used as the prefix of the summary tag,
which controls the name used for display on TensorBoard when
display_name is not set.
display_name: A string used to name this data in TensorBoard. If this is
not set, then the node name will be used instead.
Returns:
A scalar `Tensor` of type `string`. The serialized `Summary` protocol
buffer.
"""
if summary_metadata is None:
summary_metadata = _SummaryMetadata()
if summary_description is not None:
summary_metadata.summary_description = summary_description
if display_name is not None:
summary_metadata.display_name = display_name
serialized_summary_metadata = summary_metadata.SerializeToString()
if _distribute_summary_op_util.skip_summary():
return _constant_op.constant('')
with _summary_op_util.summary_scope(
name, family, values=[tensor]) as (tag, scope):
val = _gen_logging_ops.tensor_summary_v2(
tensor=tensor,
tag=tag,
name=scope,
serialized_summary_metadata=serialized_summary_metadata)
_summary_op_util.collect(val, collections, [_ops.GraphKeys.SUMMARIES])
return val
@tf_export(v1=['summary.merge'])
def merge(inputs, collections=None, name=None):
# pylint: disable=line-too-long
"""Merges summaries.
This op creates a
[`Summary`](https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto)
protocol buffer that contains the union of all the values in the input
summaries.
When the Op is run, it reports an `InvalidArgument` error if multiple values
in the summaries to merge use the same tag.
Args:
inputs: A list of `string` `Tensor` objects containing serialized `Summary`
protocol buffers.
collections: Optional list of graph collections keys. The new summary op is
added to these collections. Defaults to `[]`.
name: A name for the operation (optional).
Returns:
A scalar `Tensor` of type `string`. The serialized `Summary` protocol
buffer resulting from the merging.
Raises:
RuntimeError: If called with eager mode enabled.
@compatibility(TF2)
This API is not compatible with eager execution or `tf.function`. To migrate
to TF2, this API can be omitted entirely, because in TF2 individual summary
ops, like `tf.summary.scalar()`, write directly to the default summary writer
if one is active. Thus, it's not necessary to merge summaries or to manually
add the resulting merged summary output to the writer. See the usage example
shown below.
For a comprehensive `tf.summary` migration guide, please follow
[Migrating tf.summary usage to
TF 2.0](https://www.tensorflow.org/tensorboard/migrate#in_tf_1x).
#### TF1 & TF2 Usage Example
TF1:
```python
dist = tf.compat.v1.placeholder(tf.float32, [100])
tf.compat.v1.summary.histogram(name="distribution", values=dist)
writer = tf.compat.v1.summary.FileWriter("/tmp/tf1_summary_example")
summaries = tf.compat.v1.summary.merge_all()
sess = tf.compat.v1.Session()
for step in range(100):
mean_moving_normal = np.random.normal(loc=step, scale=1, size=[100])
summ = sess.run(summaries, feed_dict={dist: mean_moving_normal})
writer.add_summary(summ, global_step=step)
```
TF2:
```python
writer = tf.summary.create_file_writer("/tmp/tf2_summary_example")
for step in range(100):
mean_moving_normal = np.random.normal(loc=step, scale=1, size=[100])
with writer.as_default(step=step):
tf.summary.histogram(name='distribution', data=mean_moving_normal)
```
@end_compatibility
"""
# pylint: enable=line-too-long
if _context.executing_eagerly():
raise RuntimeError(
'Merging tf.summary.* ops is not compatible with eager execution. '
'Use tf.contrib.summary instead.')
if _distribute_summary_op_util.skip_summary():
return _constant_op.constant('')
name = _summary_op_util.clean_tag(name)
with _ops.name_scope(name, 'Merge', inputs):
val = _gen_logging_ops.merge_summary(inputs=inputs, name=name)
_summary_op_util.collect(val, collections, [])
return val
@tf_export(v1=['summary.merge_all'])
def merge_all(key=_ops.GraphKeys.SUMMARIES, scope=None, name=None):
"""Merges all summaries collected in the default graph.
Args:
key: `GraphKey` used to collect the summaries. Defaults to
`GraphKeys.SUMMARIES`.
scope: Optional scope used to filter the summary ops, using `re.match`.
name: A name for the operation (optional).
Returns:
If no summaries were collected, returns None. Otherwise returns a scalar
`Tensor` of type `string` containing the serialized `Summary` protocol
buffer resulting from the merging.
Raises:
RuntimeError: If called with eager execution enabled.
@compatibility(TF2)
This API is not compatible with eager execution or `tf.function`. To migrate
to TF2, this API can be omitted entirely, because in TF2 individual summary
ops, like `tf.summary.scalar()`, write directly to the default summary writer
if one is active. Thus, it's not necessary to merge summaries or to manually
add the resulting merged summary output to the writer. See the usage example
shown below.
For a comprehensive `tf.summary` migration guide, please follow
[Migrating tf.summary usage to
TF 2.0](https://www.tensorflow.org/tensorboard/migrate#in_tf_1x).
#### TF1 & TF2 Usage Example
TF1:
```python
dist = tf.compat.v1.placeholder(tf.float32, [100])
tf.compat.v1.summary.histogram(name="distribution", values=dist)
writer = tf.compat.v1.summary.FileWriter("/tmp/tf1_summary_example")
summaries = tf.compat.v1.summary.merge_all()
sess = tf.compat.v1.Session()
for step in range(100):
mean_moving_normal = np.random.normal(loc=step, scale=1, size=[100])
summ = sess.run(summaries, feed_dict={dist: mean_moving_normal})
writer.add_summary(summ, global_step=step)
```
TF2:
```python
writer = tf.summary.create_file_writer("/tmp/tf2_summary_example")
for step in range(100):
mean_moving_normal = np.random.normal(loc=step, scale=1, size=[100])
with writer.as_default(step=step):
tf.summary.histogram(name='distribution', data=mean_moving_normal)
```
@end_compatibility
"""
if _context.executing_eagerly():
raise RuntimeError(
'Merging tf.summary.* ops is not compatible with eager execution. '
'Use tf.contrib.summary instead.')
summary_ops = _ops.get_collection(key, scope=scope)
if not summary_ops:
return None
else:
return merge(summary_ops, name=name)
@tf_export(v1=['summary.get_summary_description'])
def get_summary_description(node_def):
"""Given a TensorSummary node_def, retrieve its SummaryDescription.
When a Summary op is instantiated, a SummaryDescription of associated
metadata is stored in its NodeDef. This method retrieves the description.
Args:
node_def: the node_def_pb2.NodeDef of a TensorSummary op
Returns:
a summary_pb2.SummaryDescription
Raises:
ValueError: if the node is not a summary op.
@compatibility(eager)
Not compatible with eager execution. To write TensorBoard
summaries under eager execution, use `tf.contrib.summary` instead.
@end_compatibility
"""
if node_def.op != 'TensorSummary':
raise ValueError("Can't get_summary_description on %s" % node_def.op)
description_str = _compat.as_str_any(node_def.attr['description'].s)
summary_description = SummaryDescription()
_json_format.Parse(description_str, summary_description)
return summary_description
def _get_step_for_v2():
"""Get step for v2 summary invocation in v1.
In order to invoke v2 op in `tf.compat.v1.summary`, global step needs to be
set for the v2 summary writer.
Returns:
The step set by `tf.summary.experimental.set_step` or
`tf.compat.v1.train.create_global_step`, or None is no step has been
set.
"""
step = _summary_ops_v2.get_step()
if step is not None:
return step
return _training_util.get_global_step()
def _should_invoke_v2_op():
"""Check if v2 op can be invoked.
When calling TF1 summary op in eager mode, if the following conditions are
met, v2 op will be invoked:
- The outermost context is eager mode.
- A default TF2 summary writer is present.
- A step is set for the writer (using `tf.summary.SummaryWriter.as_default`,
`tf.summary.experimental.set_step` or
`tf.compat.v1.train.create_global_step`).
Returns:
A boolean indicating whether v2 summary op should be invoked.
"""
# Check if in eager mode.
if not _ops.executing_eagerly_outside_functions():
return False
# Check if a default summary writer is present.
if not _summary_ops_v2.has_default_writer():
warnings.warn(
'Cannot activate TF2 compatibility support for TF1 summary ops: '
'default summary writer not found.')
return False
# Check if a step is set for the writer.
if _get_step_for_v2() is None:
warnings.warn(
'Cannot activate TF2 compatibility support for TF1 summary ops: '
'global step not set. To set step for summary writer, '
'use `tf.summary.SummaryWriter.as_default(step=_)`, '
'`tf.summary.experimental.set_step()` or '
'`tf.compat.v1.train.create_global_step()`.')
return False
return True
@contextlib.contextmanager
def _compat_summary_scope(name, family):
"""Handles `family` argument for v2 op invocation in v1."""
# Get a new summary tag name with the `family` arg.
with _summary_op_util.summary_scope(name, family) as (tag, _):
# Reset the root name scope with an empty summary_scope.
with _summary_op_util.summary_scope(name='', family=None):
yield tag