2066 lines
84 KiB
Python
2066 lines
84 KiB
Python
|
# Copyright 2020 The JAX Authors.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# https://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""Primitives for calling Python functions on the host from JAX accelerator code.
|
||
|
|
||
|
**Experimental: please give feedback, and expect changes.**
|
||
|
|
||
|
This module introduces the host callback functions :func:`call`,
|
||
|
:func:`id_tap`, and :func:`id_print`, that send their arguments from the device
|
||
|
to the host and invoke user-defined Python functions on the host, optionally
|
||
|
returning results back to the device computation.
|
||
|
|
||
|
We show below how these functions can be used. We start with :func:`call`,
|
||
|
and we discuss examples of calling from JAX to arbitrary Python functions
|
||
|
on the CPU, e.g., to use NumPy CPU custom kernels. Then we
|
||
|
show uses of :func:`id_tap` and :func:`id_print`, which have the restriction
|
||
|
that they cannot return values from the host to the device.
|
||
|
These primitives are generally faster
|
||
|
because they are executed asynchronously with the device code.
|
||
|
In particular, they can be used to tap into and to debug JAX code.
|
||
|
|
||
|
Using :func:`call` to call a host function and return results to device
|
||
|
-----------------------------------------------------------------------
|
||
|
|
||
|
Use :func:`call` to invoke a computation on the host and return
|
||
|
NumPy arrays to the device computation.
|
||
|
Host computation is useful, e.g., when a device computation needs some data
|
||
|
that requires I/O on the host, or it needs a library that is available on the
|
||
|
host and you do not want to code it in JAX.
|
||
|
For example, eigen decomposition for general matrices in JAX does not work on TPU.
|
||
|
We can call the Numpy implementation from any JAX accelerator computation,
|
||
|
using a host computation::
|
||
|
|
||
|
# This function runs on the host
|
||
|
def host_eig(m: np.ndarray) -> np.ndarray:
|
||
|
return np.linalg.eigvals(m)
|
||
|
|
||
|
# This function is used in JAX
|
||
|
def device_fun(m):
|
||
|
# We send "m" to the host, asking it to call "host_eig" and return the result.
|
||
|
# We have to specify the result shape and dtype, either in the form of an
|
||
|
# example return value or any object that has `shape` and `dtype` attributes,
|
||
|
# e.g., a NumPy array or a `jax.ShapeDtypeStruct`.
|
||
|
return hcb.call(host_eig, m,
|
||
|
# Given an input of shape (..., d, d), eig output has shape (..., d)
|
||
|
result_shape=jax.ShapeDtypeStruct(m.shape[:-1], m.dtype))
|
||
|
|
||
|
|
||
|
The :func:`call` function and the Python host function both take a single argument
|
||
|
and return a single result, but those can be pytrees. Note that we must tell
|
||
|
the :func:`call` what shape and dtype to expect from the host invocation, using
|
||
|
the ``result_shape`` keyword argument.
|
||
|
This is important because the device code is compiled with that expectation.
|
||
|
There will be an error raised at runtime if the actual invocation produces a
|
||
|
different result shape. In general, **such errors and also exceptions raised
|
||
|
by the host computation may be difficult to debug**. See the Debugging section
|
||
|
below.
|
||
|
This is a problem for :func:`call` but not for :func:`id_tap` because for the
|
||
|
latter the device code does not expect a returned value.
|
||
|
|
||
|
The :func:`call` API can be used inside a jit or pmap computation or inside
|
||
|
cond/scan/while control flow. When used inside :func:`jax.pmap`, there will be
|
||
|
separate calls to the host from each of the participating devices::
|
||
|
|
||
|
def host_sin(x, *, device):
|
||
|
# The ``device`` argument is passed due to ``call_with_device=True`` below.
|
||
|
print(f"Invoking host_sin with {x.shape} on {device}")
|
||
|
return np.sin(x)
|
||
|
|
||
|
# Use pmap to run the computation on two devices
|
||
|
jax.pmap(lambda x: hcb.call(host_sin, x,
|
||
|
result_shape=x,
|
||
|
# Ask that the `host_sin` function be passed `device=dev`
|
||
|
call_with_device=True))(
|
||
|
np.ones((2, 4), dtype=np.float32))
|
||
|
|
||
|
# prints (in arbitrary order)
|
||
|
# Invoking host_sin with (4,) on cpu:0
|
||
|
# Invoking host_sin with (4,) on cpu:1
|
||
|
|
||
|
Note that :func:`call` does not support any JAX transformations, but as we
|
||
|
show below one can make use of the
|
||
|
existing support for `Custom differentiation in JAX <https://jax.readthedocs.io/en/latest/notebooks/Custom_derivative_rules_for_Python_code.html>`_.
|
||
|
|
||
|
Using :func:`id_tap` to call a Python function on the host, with no returned values
|
||
|
-----------------------------------------------------------------------------------
|
||
|
|
||
|
The :func:`id_tap` and :func:`id_print` are special cases of :func:`call`, when
|
||
|
you just want the side effects of your Python callback. These functions have
|
||
|
the advantage that once the arguments have been sent to the host, the device
|
||
|
computation can proceed without waiting for the Python callback to return.
|
||
|
For :func:`id_tap` you can specify your Python callback to be called, while
|
||
|
:func:`id_print` uses a built-in callback that prints the arguments to
|
||
|
`stdout` on the host.
|
||
|
The Python function passed
|
||
|
to :func:`id_tap` takes two positional arguments (the value tapped
|
||
|
from the device computation along with a ``transforms`` tuple,
|
||
|
described below). Optionally, the function may be passed a keyword argument
|
||
|
``device`` with the Device from which the value was tapped.
|
||
|
|
||
|
A few examples::
|
||
|
|
||
|
def host_func(arg, transforms):
|
||
|
...do something with arg...
|
||
|
|
||
|
# calls host_func(2x, []) on host
|
||
|
id_tap(host_func, 2 * x)
|
||
|
|
||
|
# calls host_func((2x, 3x), [])
|
||
|
id_tap(host_func, (2 * x, 3 * x)) # The argument can be a pytree
|
||
|
|
||
|
# calls host_func(2x, [], device=jax.devices()[0])
|
||
|
id_tap(host_func, 2 * x, tap_with_device=True) # Pass the device to the tap
|
||
|
|
||
|
# calls host_func(2x, [], what='activation')
|
||
|
id_tap(functools.partial(host_func, what='activation'), 2 * x)
|
||
|
|
||
|
# calls host_func(dict(x=x, y=y), what='data')
|
||
|
id_tap(lambda tap, transforms: host_func(tap, what='data'), dict(x=x, y=y))
|
||
|
|
||
|
The above examples can all be adapted to use :func:`id_print` instead, with
|
||
|
the difference that :func:`id_print` prints on the host the positional argument,
|
||
|
along with any additional kwargs and the automatic kwarg ``transforms``.
|
||
|
|
||
|
Using :func:`barrier_wait` to wait until all callbacks have executed
|
||
|
--------------------------------------------------------------------
|
||
|
|
||
|
If your Python callbacks have side-effects you may need to wait until the
|
||
|
computation has finished to ensure that the side-effects have been observed.
|
||
|
You can use the :func:`barrier_wait` function for that purpose::
|
||
|
|
||
|
accumulator = []
|
||
|
def host_log(arg, transforms):
|
||
|
# We just record the arguments in a list
|
||
|
accumulator.append(arg)
|
||
|
|
||
|
|
||
|
def device_fun(c):
|
||
|
id_tap(host_log, x)
|
||
|
id_tap(host_log, 2. * x)
|
||
|
|
||
|
jax.jit(device_fun)(1.)
|
||
|
jax.jit(device_fun)(1.)
|
||
|
|
||
|
# At this point, we have started two computations, each with two
|
||
|
# taps, but they may not have yet executed.
|
||
|
barrier_wait()
|
||
|
# Now we know that all the computations started before `barrier_wait`
|
||
|
# on all devices, have finished, and all the callbacks have finished
|
||
|
# executing.
|
||
|
|
||
|
Note that :func:`barrier_wait` will start one
|
||
|
tiny computation with one tap on each of the `jax.local_devices()` and
|
||
|
will wait for all these taps to be received.
|
||
|
|
||
|
An alternative to using :func:`barrier_wait` is to just wait for the end
|
||
|
of the computation, if all the callbacks are :func:`call`::
|
||
|
|
||
|
accumulator = p[]
|
||
|
def host_log(arg):
|
||
|
# We just record the arguments in a list
|
||
|
accumulator.append(arg)
|
||
|
return 0. # return something
|
||
|
|
||
|
|
||
|
def device_fun(c):
|
||
|
y = call(host_log, x, result_shape=jax.ShapeDtypeStruct((), np.float32))
|
||
|
z = call(host_log, 2. * x, result_shape=jax.ShapeDtypeStruct((), np.float32))
|
||
|
return y + z # return something that uses both results
|
||
|
|
||
|
res1 = jax.jit(device_fun)(1.)
|
||
|
res2 = jax.jit(device_fun)(1.)
|
||
|
res1.block_until_ready()
|
||
|
res2.block_until_ready()
|
||
|
|
||
|
Behavior under parallelization transformations
|
||
|
----------------------------------------------
|
||
|
|
||
|
In presence of :func:`jax.pmap` the code will run on multiple devices and
|
||
|
each device will tap its values independently.
|
||
|
It may be helpful to use the ``tap_with_device`` option for :func:`id_print`
|
||
|
or :func:`id_tap`, so that you see which device is sending which data::
|
||
|
|
||
|
jax.pmap(power3, devices=jax.local_devices()[:2])(np.array([3., 4.])
|
||
|
# device=cpu:0 what=x,x^2: (3., 9.) # from the first device
|
||
|
# device=cpu:1 what=x,x^2: (4., 16.) # from the second device
|
||
|
|
||
|
When using :func:`jax.pmap` with multiple devices on multiple hosts, every
|
||
|
host will receive callbacks from all of its local devices, with an operand
|
||
|
that corresponds to each device slice. For a
|
||
|
:func:`call`, the callback must return to each device only the slice of the
|
||
|
result that pertains to the corresponding device.
|
||
|
|
||
|
When using the experimental :func:`pjit.pjit` the code will run on multiple
|
||
|
devices on different shards of the input. The current implementation of
|
||
|
host callbacks will ensure that a single device will collect and outfeed
|
||
|
the entire operand, in a single callback. The callback function is supposed
|
||
|
to return the entire array, which will then be sent in a single infeed to the
|
||
|
same device that issued the outfeed. This device is then responsible for
|
||
|
sending the required shards to the other devices::
|
||
|
|
||
|
with jax.sharding.Mesh(jax.local_devices()[:2], ["d"]):
|
||
|
pjit.pjit(power3, in_shardings=(P("d"),),
|
||
|
out_shardings=(P("d"),))(np.array([3., 4.]))
|
||
|
|
||
|
# device=TPU:0 what=x,x^2: ( [3., 4.],
|
||
|
# [9., 16.] )
|
||
|
|
||
|
Note that the collection of the operand on one device may result in OOM if
|
||
|
the operand was sharded across devices.
|
||
|
|
||
|
When using :func:`pjit.pjit` with multiple devices on multiple hosts, only
|
||
|
the host for the device 0 (w.r.t. the mesh) will receive the callback, with
|
||
|
the operand collected
|
||
|
from all participating devices on all hosts. For a :func:`call`, the callback
|
||
|
must return the entire array for all devices on all hosts.
|
||
|
|
||
|
Behavior under JAX autodiff transformations
|
||
|
-------------------------------------------
|
||
|
|
||
|
When used under a JAX autodiff transformation, the host callback functions
|
||
|
operate on the primal values only. Consider the following example::
|
||
|
|
||
|
def power3(x):
|
||
|
y = x * x
|
||
|
# Print both 'x' and 'x^2'. Must pack as a tuple.
|
||
|
hcb.id_print((x, y), what="x,x^2")
|
||
|
return y * x
|
||
|
|
||
|
power3(3.)
|
||
|
# what: x,x^2 : (3., 9.)
|
||
|
|
||
|
(You can see these examples tested in `host_callback_test.HostCallbackTapTest.test_tap_transforms`.)
|
||
|
|
||
|
When used under :func:`jax.jvp` there will be one callback with the primal
|
||
|
values only::
|
||
|
|
||
|
jax.jvp(power3, (3.,), (0.1,))
|
||
|
# what: x,x^2 : (3., 9.)
|
||
|
|
||
|
Similarly for :func:`jax.grad`, we get a callback from the forward computation
|
||
|
only::
|
||
|
|
||
|
jax.grad(power3)(3.)
|
||
|
# what: x,x^2 : (3., 9.)
|
||
|
|
||
|
If you want to invoke the callback on the tangents during a :func:`jax.jvp`,
|
||
|
you can use a custom_jvp. For example, you can define a function that does
|
||
|
nothing interesting except that its custom_jvp will print the tangents::
|
||
|
|
||
|
@jax.custom_jvp
|
||
|
def print_tangents(arg):
|
||
|
return None
|
||
|
|
||
|
@print_tangents.defjvp
|
||
|
def print_tangents_jvp(primals, tangents):
|
||
|
arg_dot, = tangents
|
||
|
hcb.id_print(arg_dot, what="tangents")
|
||
|
return primals, tangents
|
||
|
|
||
|
Then you use this function in the places where you want to tap the tangents::
|
||
|
|
||
|
def power3_with_tangents(x):
|
||
|
y = x * x
|
||
|
# Print both 'x' and 'x^2'. Must pack as a tuple.
|
||
|
hcb.id_print((x, y), what="x,x^2")
|
||
|
print_tangents((x, y))
|
||
|
return y * x
|
||
|
|
||
|
jax.jvp(power3_with_tangents, (3.,), (0.1,))
|
||
|
# what: x,x^2 : (3., 9.)
|
||
|
# what: tangents : (0.1, 0.6)
|
||
|
|
||
|
You can do a similar thing for the cotangents during :func:`jax.grad`. This
|
||
|
time you must be careful to use in the rest of the computation the values whose
|
||
|
cotangents you want to tap. Hence we make the ``print_cotangents`` return
|
||
|
its argument::
|
||
|
|
||
|
@jax.custom_vjp
|
||
|
def print_cotangents(arg):
|
||
|
# Must return the argument for which we want the cotangent.
|
||
|
return arg
|
||
|
|
||
|
# f_fwd: a -> (b, residual)
|
||
|
def print_cotangents_fwd(arg):
|
||
|
return print_cotangents(arg), None
|
||
|
# f_bwd: (residual, CT b) -> [CT a]
|
||
|
def print_cotangents_bwd(residual, ct_b):
|
||
|
hcb.id_print(ct_b, what="cotangents", output_stream=testing_stream)
|
||
|
return ct_b,
|
||
|
|
||
|
print_cotangents.defvjp(print_cotangents_fwd, print_cotangents_bwd)
|
||
|
|
||
|
def power3_with_cotangents(x):
|
||
|
y = x * x
|
||
|
# Print both 'x' and 'x^2'. Must pack as a tuple.
|
||
|
hcb.id_print((x, y), what="x,x^2", output_stream=testing_stream)
|
||
|
(x1, y1) = print_cotangents((x, y))
|
||
|
# Must use the output of print_cotangents
|
||
|
return y1 * x1
|
||
|
|
||
|
jax.grad(power3_with_cotangents)(3.)
|
||
|
# what: x,x^2 : (3., 9.)
|
||
|
# what: cotangents : (9., 3.)
|
||
|
|
||
|
If you use :func:`ad_checkpoint.checkpoint` to rematerialize the residuals
|
||
|
for the backward pass, then the callbacks from the primal computation will
|
||
|
be called twice::
|
||
|
|
||
|
jax.grad(lambda x: power3(ad_checkpoint.checkpoint(power3)(x)))(3.)
|
||
|
# what: x,x^2 : (3., 9.)
|
||
|
# what: x,x^2 : (27., 729.)
|
||
|
# what: x,x^2 : (3., 9.)
|
||
|
|
||
|
The callbacks are, in order from: the primal computation of the inner ``power3``,
|
||
|
the primal computation of the outer ``power3``, and the rematerialization
|
||
|
of the residuals for the inner ``power3``.
|
||
|
|
||
|
|
||
|
Behavior under jax.vmap
|
||
|
-----------------------
|
||
|
|
||
|
The host callback functions :func:`id_print` and :func:`id_tap` support the
|
||
|
vectorization transformation :func:`jax.vmap`.
|
||
|
|
||
|
For :func:`jax.vmap` the arguments to the callback are batched,
|
||
|
and the callback function is
|
||
|
passed an additional special ``transforms`` containing a list of transformation descriptors
|
||
|
in the form ``("batch", {"batch_dims": ...})``, where ``...``` denotes the
|
||
|
batched dimensions for the tapped values (one entry per argument, `
|
||
|
`None`` denotes an argument that was broadcast).
|
||
|
|
||
|
jax.vmap(power3)(np.array([2., 3.]))
|
||
|
# transforms: [('batch', {'batch_dims': (0, 0)})] what: x,x^2 : ([2., 3.], [4., 9.])
|
||
|
|
||
|
See documentation for :func:`id_tap`, :func:`id_print`, and :func:`call`.
|
||
|
|
||
|
For more usage example, see tests/host_callback_test.py.
|
||
|
|
||
|
Using :func:`call` to call a TensorFlow function, with reverse-mode autodiff support
|
||
|
------------------------------------------------------------------------------------
|
||
|
|
||
|
Another possible use for host computation is to invoke a library written for
|
||
|
another framework, such as TensorFlow.
|
||
|
In this case it becomes interesting to support JAX autodiff for host callbacks
|
||
|
by deferring to the autodiff mechanism in TensorFlow,
|
||
|
using the :func:`jax.custom_vjp` mechanism.
|
||
|
|
||
|
This is relatively easy to do, once one understands both the JAX custom VJP
|
||
|
and the TensorFlow autodiff mechanisms.
|
||
|
The code for how this can be done is shown in the ``call_tf_full_ad``
|
||
|
function in `host_callback_to_tf_test.py <https://github.com/google/jax/blob/main/tests/host_callback_to_tf_test.py>`_.
|
||
|
This example supports arbitrary higher-order differentiation as well.
|
||
|
|
||
|
Note that if you just want to call TensorFlow functions from JAX, you can also
|
||
|
use the `jax2tf.call_tf function <https://github.com/google/jax/blob/main/jax/experimental/jax2tf/call_tf.py>`_.
|
||
|
|
||
|
Using :func:`call` to call a JAX function on another device, with reverse-mode autodiff support
|
||
|
------------------------------------------------------------------------------------------------
|
||
|
|
||
|
It should not be surprising that we can use host computation to invoke a JAX
|
||
|
computation on another device. The arguments are sent from the accelerator to
|
||
|
the host, and then to the outside device on which the JAX host
|
||
|
computation will run, and then the results are sent back to the original accelerator.
|
||
|
|
||
|
The code for how this can be done is shown in the ``call_jax_other_device function``
|
||
|
in `host_callback_test.py <https://github.com/google/jax/blob/main/tests/host_callback_test.py>`_.
|
||
|
|
||
|
Low-level details and debugging
|
||
|
-------------------------------
|
||
|
|
||
|
The host callback functions will be executed for each device in the order in
|
||
|
which the send operations were performed on the device.
|
||
|
|
||
|
The host callback functions for multiple devices may be interleaved.
|
||
|
The data from the devices is received by separate threads managed by the JAX
|
||
|
runtime (one thread per device). The runtime maintains a buffer of
|
||
|
configurable size (see the flag ``--jax_host_callback_max_queue_byte_size``).
|
||
|
When the buffer is full, all the receiving threads are paused
|
||
|
which eventually pauses the computation on devices. The runtime has one
|
||
|
additional thread for each device to invoke the Python user functions with the
|
||
|
received data. If the processing of the callbacks is slow, it may actually
|
||
|
lead to the runtime buffer filling up, and eventually pausing the computation
|
||
|
on the devices when they need to send something.
|
||
|
For more details on the outfeed receiver runtime mechanism see
|
||
|
`runtime code
|
||
|
<https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/xla/python/outfeed_receiver.cc>`_.
|
||
|
|
||
|
In order to pause the execution until all data from computations already
|
||
|
started on devices has arrived and has been processed, use :func:`barrier_wait`.
|
||
|
|
||
|
Exceptions from the user-defined callback functions are logged along with their
|
||
|
stack traces, but the receiving threads are not stopped. Instead the last
|
||
|
exception is recorded and the subsequent :func:`barrier_wait` will
|
||
|
raise :exc:`CallbackException` if any exception had occurred
|
||
|
in one of the tap functions. This exception will include the text and the
|
||
|
stack trace of the last exception encountered.
|
||
|
|
||
|
One further complication arises for callback functions that must return
|
||
|
results to the call origin device, such as :func:`call()`. This is handled
|
||
|
differently on CPU/GPU devices compared to TPU devices.
|
||
|
|
||
|
On CPU/GPU devices, in order to avoid the device computation
|
||
|
being stuck waiting for a result that will never arrive, in case of any
|
||
|
error during the processing of the callback (whether raised by the user-code
|
||
|
itself or due to a mismatch of the returned value and the expected return_shape)
|
||
|
we send the device a "fake" result of shape ``int8[12345]``.
|
||
|
This will make the device
|
||
|
computation abort because the received data is different than the one that
|
||
|
it expects. On CPU the runtime will crash with a distinctive error message:
|
||
|
|
||
|
```
|
||
|
Check failed: buffer->length() == buffer_length (12345 vs. ...)
|
||
|
```
|
||
|
|
||
|
On GPU, the failure is more user-friendly and will be surfaced to the Python
|
||
|
program as:
|
||
|
|
||
|
```
|
||
|
RET_CHECK failure ... Mismatch between infeed source buffer shape s8[12345] ...
|
||
|
```
|
||
|
|
||
|
To debug the underlying cause for these messages, see the Debugging section.
|
||
|
|
||
|
On TPU devices, there is currently no shape check for infeed, so we take the
|
||
|
safer route of not sending this fake result in case of errors. This means
|
||
|
that the computation will hang, and no exception will be raised (but any
|
||
|
exceptions in the callback functions will still appear in the logs).
|
||
|
|
||
|
The current implementation uses the outfeed mechanism provided by XLA. The
|
||
|
mechanism itself is quite primitive in the sense that a receiver must know
|
||
|
exactly the shape of each incoming packet, and how many packets are expected.
|
||
|
This makes it hard to use for multiple kinds of data in the same computation,
|
||
|
and it is practically impossible to use it under conditionals or in loops
|
||
|
of non-constant iteration count. Furthermore, code that uses the outfeed
|
||
|
mechanism directly cannot be transformed by JAX. All these limitations are
|
||
|
addressed by the host callback functions. The tapping API introduced here
|
||
|
makes it easy to share the outfeed mechanism for multiple purposes, while
|
||
|
supporting all transformations.
|
||
|
|
||
|
**Note that after you have used the host callback functions, you cannot
|
||
|
use lax.outfeed directly**. You may want to :func:`stop_outfeed_receiver`
|
||
|
if you later need to use lax.outfeed.
|
||
|
|
||
|
Since the actual calls to your callback functions are made from the C++
|
||
|
receiver, it may be hard to debug the calls. In particular, the stack trace
|
||
|
will not include the calling code. You can use the flag
|
||
|
``jax_host_callback_inline`` (or the environment variable
|
||
|
``JAX_HOST_CALLBACK_INLINE``) to ensure that the calls to the callbacks are
|
||
|
inlined. This works only if the calls are outside a staging context
|
||
|
(:func:`~jax.jit` or a control-flow primitive).
|
||
|
|
||
|
The C++ `receiver
|
||
|
<https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/xla/python/outfeed_receiver.cc>`_
|
||
|
is started automatically on the first call to :func:`id_tap`. In order to stop
|
||
|
it properly, upon start an ``atexit`` handler is registered to call
|
||
|
:func:`barrier_wait` with the logging name "at_exit".
|
||
|
|
||
|
There are a few environment variables that you can use to turn on logging
|
||
|
for the C++ outfeed `receiver backend
|
||
|
<https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/xla/python/outfeed_receiver.cc>`_.
|
||
|
|
||
|
* ``TF_CPP_MIN_LOG_LEVEL=0``: will turn on INFO logging, needed for all below.
|
||
|
* ``TF_CPP_MIN_VLOG_LEVEL=3``: will make all VLOG logging up to level 3 behave
|
||
|
like INFO logs. This may be too much, but you will see which modules are
|
||
|
logging relevant info, and then you can select which modules to log from.
|
||
|
* ``TF_CPP_VMODULE=<module_name>=3`` (the module name can be either C++ or
|
||
|
Python, without the extension).
|
||
|
|
||
|
You should also use the ``--verbosity=2`` flag so that you see the logs
|
||
|
from Python.
|
||
|
|
||
|
For example, you can try to enable logging in the ``host_callback`` module:
|
||
|
``TF_CPP_MIN_LOG_LEVEL=0 TF_CPP_VMODULE=host_callback=3 python tests/host_callback_test.py --verbosity=2 HostCallbackIdTapTest.test_tap_jit_simple``
|
||
|
|
||
|
If you want to enable logging in lower-level implementation modules try:
|
||
|
``TF_CPP_MIN_LOG_LEVEL=0 TF_CPP_VMODULE=outfeed_receiver=3,host_callback=3,outfeed_receiver_py=3,outfeed_thunk=3,infeed_thunk=3,cpu_transfer_manager=3,cpu_runtime=3,xfeed_manager=3,pjrt_client=3 python tests/host_callback_test.py --verbosity=2 HostCallbackIdTapTest.test_tap_jit_simple``
|
||
|
|
||
|
(For bazel tests use --test_arg=--vmodule=...
|
||
|
|
||
|
Still to do:
|
||
|
* More performance tests.
|
||
|
* Explore implementation with outside compilation for TPU.
|
||
|
* Explore implementation with XLA CustomCall for CPU and GPU.
|
||
|
|
||
|
"""
|
||
|
import atexit
|
||
|
import functools
|
||
|
import itertools
|
||
|
import logging
|
||
|
import math
|
||
|
import threading
|
||
|
import traceback
|
||
|
from typing import (Any, Callable, Dict, List, Optional, Sequence,
|
||
|
Tuple, cast)
|
||
|
import warnings
|
||
|
|
||
|
from jax._src import api
|
||
|
from jax._src import core
|
||
|
from jax import config
|
||
|
from jax import custom_derivatives
|
||
|
from jax._src import dtypes
|
||
|
from jax import lax
|
||
|
from jax.experimental import pjit
|
||
|
from jax._src.interpreters import ad, batching, pxla
|
||
|
from jax._src.interpreters import mlir
|
||
|
from jax._src.interpreters import partial_eval as pe
|
||
|
from jax._src.interpreters import xla
|
||
|
from jax._src import ad_checkpoint
|
||
|
from jax._src import dispatch
|
||
|
from jax._src import pretty_printer as pp
|
||
|
from jax._src import sharding_impls
|
||
|
from jax._src import source_info_util
|
||
|
from jax._src import util
|
||
|
from jax._src.lib import pytree
|
||
|
from jax._src import xla_bridge as xb
|
||
|
from jax._src.lib import xla_client
|
||
|
from jax._src.lib import xla_extension
|
||
|
from jax._src.lib.mlir.dialects import hlo
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
FLAGS = config.FLAGS
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
def _inline_host_callback() -> bool:
|
||
|
return FLAGS.jax_host_callback_inline
|
||
|
|
||
|
|
||
|
def _use_outfeed(platform: str) -> bool:
|
||
|
return (platform in ("tpu", "gpu", "cuda", "rocm") or FLAGS.jax_host_callback_outfeed)
|
||
|
|
||
|
|
||
|
def _raise_if_using_outfeed_with_pjrt_c_api(backend: xb.XlaBackend):
|
||
|
"""Should be called whenever outfeed (or infeed) will be used."""
|
||
|
if xb.using_pjrt_c_api(backend):
|
||
|
raise NotImplementedError(
|
||
|
"host_callback functionality isn't supported with the new Cloud TPU "
|
||
|
"runtime. See https://jax.readthedocs.io/en/latest/debugging/index.html"
|
||
|
" and "
|
||
|
"https://jax.readthedocs.io/en/latest/notebooks/external_callbacks.html"
|
||
|
" for alternatives. Please file a feature request at "
|
||
|
"https://github.com/google/jax/issues if none of the alternatives are "
|
||
|
"sufficent.")
|
||
|
|
||
|
|
||
|
xops = xla_client._xla.ops
|
||
|
|
||
|
XlaOp = xla_client.XlaOp
|
||
|
XlaShape = xla_client.Shape
|
||
|
XlaBuilder = xla_client.XlaBuilder
|
||
|
XlaDevice = xla_client.Device
|
||
|
XlaLocalClient = xla_client.Client
|
||
|
DType = Any
|
||
|
|
||
|
|
||
|
def id_tap(tap_func,
|
||
|
arg,
|
||
|
*,
|
||
|
result=None,
|
||
|
tap_with_device=False,
|
||
|
device_index=0,
|
||
|
**kwargs):
|
||
|
"""Host-callback tap primitive, like identity function with a call to ``tap_func``.
|
||
|
|
||
|
**Experimental: please give feedback, and expect changes!**
|
||
|
|
||
|
``id_tap`` behaves semantically like the identity function but has the
|
||
|
side-effect that a user-defined Python function is called with the runtime
|
||
|
value of the argument.
|
||
|
|
||
|
Args:
|
||
|
tap_func: tap function to call like ``tap_func(arg, transforms)``, with
|
||
|
``arg`` as described below and where ``transforms`` is the sequence of
|
||
|
applied JAX transformations in the form ``(name, params)``. If the
|
||
|
`tap_with_device` optional argument is True, then the invocation also
|
||
|
includes the device from which the value is tapped as a keyword argument:
|
||
|
``tap_func(arg, transforms, device=dev)``.
|
||
|
arg: the argument passed to the tap function, can be a pytree of JAX
|
||
|
types.
|
||
|
result: if given, specifies the return value of ``id_tap``. This value is
|
||
|
not passed to the tap function, and in fact is not sent from the device to
|
||
|
the host. If the ``result`` parameter is not specified then the return
|
||
|
value of ``id_tap`` is ``arg``.
|
||
|
tap_with_device: if True then the tap function is invoked with the
|
||
|
device from which the tap originates as a keyword argument.
|
||
|
device_index: specifies from which device the tap function is invoked in a
|
||
|
SPMD program. Works only when using the outfeed implementation mechanism,
|
||
|
i.e., does not work on CPU unless --jax_host_callback_outfeed=True.
|
||
|
|
||
|
Returns:
|
||
|
``arg``, or ``result`` if given.
|
||
|
|
||
|
The order of execution is by data dependency: after all the arguments and
|
||
|
the value of ``result`` if present, are computed and before the returned
|
||
|
value is used. At least one of the returned values of ``id_tap`` must be
|
||
|
used in the rest of the computation, or else this operation has no effect.
|
||
|
|
||
|
Tapping works even for code executed on accelerators and even for code under
|
||
|
JAX transformations.
|
||
|
|
||
|
For more details see the :mod:`jax.experimental.host_callback` module documentation.
|
||
|
"""
|
||
|
if kwargs:
|
||
|
msg = (
|
||
|
"Support for **kwargs in ``id_tap`` has been removed. Instead, "
|
||
|
"pre-apply keyword arguments, either by using a closure or by passing "
|
||
|
"``functools.partial(tap_func, **kwargs)``.")
|
||
|
raise TypeError(msg)
|
||
|
if FLAGS.jax_host_callback_ad_transforms:
|
||
|
warnings.warn('The flag jax_host_callback_ad_transforms is for temporary '
|
||
|
'backwards compatibility mode. This flag, and the behavior '
|
||
|
'it enabled will be removed soon.',
|
||
|
FutureWarning)
|
||
|
|
||
|
if result is not None:
|
||
|
flat_results, result_treedef = pytree.flatten(result)
|
||
|
for r in flat_results:
|
||
|
dispatch.check_arg(r)
|
||
|
|
||
|
call_res = _call(
|
||
|
tap_func,
|
||
|
arg,
|
||
|
call_with_device=tap_with_device,
|
||
|
result_shape=None,
|
||
|
identity=True,
|
||
|
device_index=device_index)
|
||
|
|
||
|
if result is not None:
|
||
|
# Return the results, but add a dependency on the call, to ensure it
|
||
|
# is kept in the graph.
|
||
|
if FLAGS.jax_host_callback_ad_transforms:
|
||
|
call_flat_results, _ = pytree.flatten(call_res)
|
||
|
if call_flat_results:
|
||
|
call_flat_results = [id_tap_dep_p.bind(r, call_flat_results[0])
|
||
|
for r in flat_results]
|
||
|
else:
|
||
|
call_flat_results = flat_results
|
||
|
return result_treedef.unflatten(call_flat_results)
|
||
|
else:
|
||
|
return result
|
||
|
else:
|
||
|
return call_res
|
||
|
|
||
|
|
||
|
def id_print(arg,
|
||
|
*,
|
||
|
result=None,
|
||
|
tap_with_device=False,
|
||
|
device_index=0,
|
||
|
output_stream=None,
|
||
|
threshold=None,
|
||
|
**kwargs):
|
||
|
"""Like :func:`id_tap` with a printing tap function.
|
||
|
|
||
|
**Experimental: please give feedback, and expect changes!**
|
||
|
|
||
|
On each invocation of the printing tap, the ``kwargs`` if present
|
||
|
will be printed first (sorted by keys). Then arg will be printed,
|
||
|
with the arrays stringified with ``numpy.array2string``.
|
||
|
|
||
|
See the :func:`id_tap` documentation.
|
||
|
|
||
|
Additional keyword arguments:
|
||
|
|
||
|
* ``tap_with_device`` if True, will print also the device from which
|
||
|
the value originates.
|
||
|
* ``output_stream`` if given then it will be used instead of the
|
||
|
built-in ``print``. The string will be passed as
|
||
|
``output_stream.write(s)``.
|
||
|
* ``threshold`` is passed to ``numpy.array2string``.
|
||
|
|
||
|
For more details see the :mod:`jax.experimental.host_callback` module documentation.
|
||
|
"""
|
||
|
printer = functools.partial(_print_tap_func,
|
||
|
output_stream=output_stream,
|
||
|
threshold=threshold, **kwargs)
|
||
|
return id_tap(
|
||
|
printer,
|
||
|
arg,
|
||
|
result=result,
|
||
|
tap_with_device=tap_with_device,
|
||
|
device_index=device_index)
|
||
|
|
||
|
|
||
|
def call(callback_func: Callable, arg, *,
|
||
|
result_shape=None,
|
||
|
call_with_device=False,
|
||
|
device_index=0):
|
||
|
"""Make a call to the host, and expect a result.
|
||
|
|
||
|
**Experimental: please give feedback, and expect changes!**
|
||
|
|
||
|
Args:
|
||
|
callback_func: The Python function to invoke on the host as
|
||
|
``callback_func(arg)``. If the ``call_with_device`` optional argument is True,
|
||
|
then the invocation also includes the ``device`` kwarg with the device
|
||
|
from which the call originates: ``callback_func(arg, device=dev)``. This function
|
||
|
must return a pytree of numpy ndarrays.
|
||
|
|
||
|
arg: the argument passed to the callback function, can be a pytree of JAX
|
||
|
types.
|
||
|
|
||
|
result_shape: a value that describes the expected shape and dtype of the
|
||
|
result. This can be a numeric scalar, from which a shape and dtype are
|
||
|
obtained, or an object that has ``.shape`` and ``.dtype`` attributes.
|
||
|
If the result of the callback is a pytree, then ``result_shape`` should
|
||
|
also be a pytree with the same structure. In particular, ``result_shape``
|
||
|
can be `()` or `None` if the function does not have any results.
|
||
|
The device code containing ``call`` is compiled with the expected result shape and dtype,
|
||
|
and an error will be raised at runtime if the actual ``callback_func``
|
||
|
invocation returns a different kind of result.
|
||
|
|
||
|
call_with_device: if True then the callback function is invoked with the
|
||
|
device from which the call originates as a keyword argument.
|
||
|
|
||
|
device_index: specifies from which device the tap function is invoked in a
|
||
|
SPMD program. Works only when using the outfeed implementation mechanism,
|
||
|
i.e., does not work on CPU unless --jax_host_callback_outfeed=True.
|
||
|
Returns:
|
||
|
the result of the ``callback_func`` invocation.
|
||
|
|
||
|
For more details see the :mod:`jax.experimental.host_callback` module documentation.
|
||
|
"""
|
||
|
return _call(callback_func, arg, result_shape=result_shape,
|
||
|
call_with_device=call_with_device, identity=False,
|
||
|
device_index=device_index)
|
||
|
|
||
|
|
||
|
# We need the wrapper function to have hash and equality defined since it is
|
||
|
# used as a primitive keyword argument, and we want a compilation cache hit if
|
||
|
# the user uses the same function twice.
|
||
|
class _CallbackWrapper:
|
||
|
def __init__(self, callback_func, identity, call_with_device):
|
||
|
self.callback_func = callback_func
|
||
|
self.identity = identity
|
||
|
self.call_with_device = call_with_device
|
||
|
|
||
|
def __hash__(self):
|
||
|
return hash((self.callback_func, self.identity, self.call_with_device))
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
return (self.callback_func == other.callback_func and
|
||
|
self.identity == other.identity and
|
||
|
self.call_with_device == other.call_with_device)
|
||
|
|
||
|
def __call__(self, arg, device, transforms):
|
||
|
if self.identity:
|
||
|
# For id_tap, we pass the transforms, for backwards compatibility
|
||
|
if self.call_with_device:
|
||
|
return self.callback_func(arg, transforms, device=device)
|
||
|
else:
|
||
|
return self.callback_func(arg, transforms)
|
||
|
else:
|
||
|
if self.call_with_device:
|
||
|
return self.callback_func(arg, device=device)
|
||
|
else:
|
||
|
return self.callback_func(arg)
|
||
|
|
||
|
|
||
|
# Helper function to implement both `call` and `id_tap`. The two cases are
|
||
|
# differentiated by the `identity` flag.
|
||
|
def _call(callback_func: Callable,
|
||
|
arg,
|
||
|
*,
|
||
|
result_shape=None,
|
||
|
call_with_device=False,
|
||
|
device_index=0,
|
||
|
identity=False):
|
||
|
# Lazy initialization
|
||
|
_initialize_outfeed_receiver(
|
||
|
max_callback_queue_size_bytes=FLAGS.jax_host_callback_max_queue_byte_size)
|
||
|
api.check_callable(callback_func)
|
||
|
flat_args, arg_treedef = pytree.flatten(arg)
|
||
|
for arg in flat_args:
|
||
|
dispatch.check_arg(arg)
|
||
|
# See definition of outside_call_p for what parameters it takes
|
||
|
params: Dict[str, Any] = {}
|
||
|
# TODO: wrap function
|
||
|
params["callback"] = _CallbackWrapper(callback_func, identity,
|
||
|
call_with_device)
|
||
|
params["identity"] = identity
|
||
|
params["arg_treedef"] = arg_treedef
|
||
|
params["device_index"] = device_index
|
||
|
|
||
|
if not identity:
|
||
|
# Turn abstract values into ShapesDtypeStruct
|
||
|
flat_results_shape, result_treedef = pytree.flatten(result_shape)
|
||
|
try:
|
||
|
flat_results_aval = [core.ShapedArray(np.shape(r), dtypes.dtype(r, canonicalize=True))
|
||
|
for r in flat_results_shape]
|
||
|
except Exception:
|
||
|
msg = ("result_shape should be a pytree of values with structure "
|
||
|
"matching the expected result of the callback function. The "
|
||
|
"values must be either numeric scalars, or must have 'shape' and "
|
||
|
f"'dtype' attributes. Got {result_shape}")
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
params["result_treedef"] = result_treedef
|
||
|
params["flat_results_aval"] = tuple(flat_results_aval)
|
||
|
flat_results = outside_call_p.bind(*flat_args, **params)
|
||
|
return result_treedef.unflatten(flat_results) if not identity else arg_treedef.unflatten(flat_results)
|
||
|
|
||
|
|
||
|
# We need the lock for when we use the CustomCall implementation of callbacks.
|
||
|
# The outfeed implementation is driven by a single thread from C++.
|
||
|
_print_tap_lock = threading.Lock()
|
||
|
|
||
|
|
||
|
def _print_tap_func(
|
||
|
arg, transforms, *, device=None,
|
||
|
output_stream=None, threshold=1024, **kwargs):
|
||
|
"""The consumer for id_print.
|
||
|
|
||
|
We provide this as a simple tapping function for printing.
|
||
|
This is **experimental** and may not want to add many features to it;
|
||
|
it should be easy for the user to roll their own printing function.
|
||
|
|
||
|
Args:
|
||
|
device: the device from which the value originates (only if
|
||
|
``tap_with_device`` was used for :func:`id_print`).
|
||
|
output_stream: a function whose `write` method is called with the strings to
|
||
|
be output.
|
||
|
threshold: the value of numpy.array2string threshold parameter.
|
||
|
**kwargs: all other keyword args are printed before printing `arg`.
|
||
|
"""
|
||
|
|
||
|
def emit_str(s: str):
|
||
|
if output_stream is not None:
|
||
|
output_stream.write(s + "\n")
|
||
|
else:
|
||
|
print(s)
|
||
|
|
||
|
if transforms:
|
||
|
kwargs['transforms'] = [(name, params) if params else name
|
||
|
for name, params in transforms]
|
||
|
if device is not None:
|
||
|
kwargs['device'] = device
|
||
|
kv_pairs = " ".join([
|
||
|
f"{k}: {v}" for k, v in sorted(kwargs.items())
|
||
|
])
|
||
|
|
||
|
def pp_val(arg) -> pp.Doc:
|
||
|
if isinstance(arg, tuple):
|
||
|
return pp.group(pp.concat([
|
||
|
pp.text("( "),
|
||
|
pp.nest(2, pp.join(pp.brk(), [pp_val(e) for e in arg])),
|
||
|
pp.text(" )")
|
||
|
]))
|
||
|
elif isinstance(arg, list):
|
||
|
return pp.group(pp.concat([
|
||
|
pp.text("[ "),
|
||
|
pp.nest(2, pp.join(pp.brk(), [pp_val(e) for e in arg])),
|
||
|
pp.text(" ]")
|
||
|
]))
|
||
|
elif isinstance(arg, dict):
|
||
|
return pp.group(pp.concat([
|
||
|
pp.text("{ "),
|
||
|
pp.nest(2, pp.join(pp.brk(), [
|
||
|
pp.text(f"{k}=") + pp_val(v) for k, v in sorted(arg.items())
|
||
|
])),
|
||
|
pp.text(" }")
|
||
|
]))
|
||
|
elif isinstance(arg, np.ndarray):
|
||
|
return pp.text(np.array2string(arg, threshold=threshold))
|
||
|
else:
|
||
|
return pp.text(str(arg))
|
||
|
|
||
|
with _print_tap_lock:
|
||
|
if kv_pairs:
|
||
|
emit_str(kv_pairs)
|
||
|
emit_str(str(pp_val(arg)))
|
||
|
|
||
|
|
||
|
def _values_to_avals(vals) -> Sequence[core.ShapedArray]:
|
||
|
return tuple(core.raise_to_shaped(core.get_aval(v)) for v in vals)
|
||
|
|
||
|
### The id_tap_dep primitive
|
||
|
# The id_tap_dep_p primitive is used to create a dependency of the result of
|
||
|
# id_tap on the actual tap operation. This is only needed when the
|
||
|
# id_tap function is used with the `result` parameter. This primitive acts
|
||
|
# as the identity operator on the first argument.
|
||
|
#
|
||
|
# For example, given `id_tap(f, (a, b), result=(r, s)`, we convert this to
|
||
|
#
|
||
|
# a1, b1 = outside_call_p(f, a, b)
|
||
|
# r1 = id_tap_dep_p(r, a1)
|
||
|
# s1 = id_tap_dep_p(s, a1)
|
||
|
#
|
||
|
# There are always two arguments and the result is equal to the first.
|
||
|
id_tap_dep_p = core.Primitive("id_tap_dep")
|
||
|
id_tap_dep_p.multiple_results = False
|
||
|
id_tap_dep_p.def_impl(lambda r, _: r)
|
||
|
xla.register_translation(id_tap_dep_p,
|
||
|
lambda ctx, avals_in, avals_out, a_res, a_tap: [a_res])
|
||
|
id_tap_dep_p.def_abstract_eval(lambda r_a, _: r_a)
|
||
|
|
||
|
def _id_tap_dep_jvp_rule(primals, tangents):
|
||
|
if FLAGS.jax_host_callback_ad_transforms:
|
||
|
assert False
|
||
|
tangents_instantiated = tuple(map(_instantiate_zeros, tangents, primals))
|
||
|
return (id_tap_dep_p.bind(primals[0], primals[1]),
|
||
|
id_tap_dep_p.bind(tangents_instantiated[0], tangents_instantiated[1]))
|
||
|
|
||
|
ad.primitive_jvps[id_tap_dep_p] = _id_tap_dep_jvp_rule
|
||
|
|
||
|
def _id_tap_dep_transpose_rule(cts, arg_res, arg_tap):
|
||
|
if FLAGS.jax_host_callback_ad_transforms:
|
||
|
assert False
|
||
|
if ad.is_undefined_primal(arg_res):
|
||
|
ct_res = _instantiate_zeros(cts, arg_res)
|
||
|
else:
|
||
|
ct_res = None
|
||
|
if ad.is_undefined_primal(arg_tap):
|
||
|
ct_tap = ad.Zero(arg_tap.aval)
|
||
|
else:
|
||
|
ct_tap = None
|
||
|
return (ct_res, ct_tap)
|
||
|
|
||
|
ad.primitive_transposes[id_tap_dep_p] = _id_tap_dep_transpose_rule
|
||
|
|
||
|
|
||
|
def _id_tap_dep_batching_rule(batched_args, batch_dims):
|
||
|
if FLAGS.jax_host_callback_ad_transforms:
|
||
|
assert False
|
||
|
arg_res, arg_tap = batched_args
|
||
|
return id_tap_dep_p.bind(arg_res, arg_tap), batch_dims[0]
|
||
|
|
||
|
|
||
|
batching.primitive_batchers[id_tap_dep_p] = _id_tap_dep_batching_rule
|
||
|
|
||
|
### The outside_call primitive
|
||
|
"""
|
||
|
This primitive is used to implement the `call` and `id_tap` functions.
|
||
|
It takes several positional arguments that are the flattened
|
||
|
according to `arg_treedef`.
|
||
|
The result of the primitive is computed based on the `identity` parameter,
|
||
|
as follows:
|
||
|
|
||
|
* if `identity` is True, then the results are the same as the
|
||
|
positional arguments of the primitive (except perhaps the last couple of
|
||
|
arguments, see `has_token`). In this case, `result_treedef` and
|
||
|
`flat_results_aval` are ignored, and `args_treedef` describes the result also.
|
||
|
* if `identity` is False, then the results are those from
|
||
|
the call to the outside computation:
|
||
|
|
||
|
flatten(callback(arg_treedef.unflatten(args), device=...))
|
||
|
|
||
|
In this case, the callback results must match `result_treedef`
|
||
|
and `flat_results_aval`.
|
||
|
|
||
|
It takes the following parameters:
|
||
|
|
||
|
* callback: the function to invoke with the unflattened arguments,
|
||
|
the device and the transforms: `callback(arrays, device, transforms)`
|
||
|
* arg_treedef: the treedef for the argument.
|
||
|
* identity: see description above.
|
||
|
* result_treedef, flat_results_aval: describes the expected result of the
|
||
|
callback. Only used when not `identity`.
|
||
|
* transforms: a tuple of the transformations that have been applied. Each
|
||
|
element of the tuple is itself a tuple with the first element the name
|
||
|
of the transform. The remaining elements depend on the transform. For
|
||
|
example, for `batch`, the parameters are the dimensions that have been
|
||
|
batched, and for `mask` the logical shapes. These are unpacked by
|
||
|
_outside_call_run_callback before passing to the user function.
|
||
|
* has_token: a boolean, when True it means that the last positional argument
|
||
|
is the current token. In this case, the result of the primitive is
|
||
|
going to be the non-token positional arguments, along with the updated
|
||
|
token. The tokens and this parameter are added after all the JAX
|
||
|
transformations, just before staging XLA.
|
||
|
* device_index: an integer, denotes from which device the invocation is from.
|
||
|
Works only when using the outfeed implementation mechanism, i.e., does
|
||
|
not work on CPU unless --jax_host_callback_outfeed=True.
|
||
|
"""
|
||
|
outside_call_p = core.Primitive("outside_call")
|
||
|
outside_call_p.multiple_results = True
|
||
|
core.outfeed_primitives.add(outside_call_p)
|
||
|
|
||
|
|
||
|
def _outside_call_abstract_eval(*args_a: pe.AbstractValue,
|
||
|
identity, **params) -> Sequence[pe.AbstractValue]:
|
||
|
if identity:
|
||
|
# Do some validation here
|
||
|
assert "result_treedef" not in params
|
||
|
assert "flat_results_aval" not in params
|
||
|
return args_a
|
||
|
assert params["device_index"] is not None
|
||
|
assert params["result_treedef"] is not None
|
||
|
assert params["flat_results_aval"] is not None
|
||
|
flat_results_aval = params["flat_results_aval"]
|
||
|
if "has_token" in params and params["has_token"]:
|
||
|
assert len(args_a) >= 2
|
||
|
return flat_results_aval + args_a[-2:]
|
||
|
else:
|
||
|
return flat_results_aval
|
||
|
|
||
|
|
||
|
outside_call_p.def_abstract_eval(_outside_call_abstract_eval)
|
||
|
|
||
|
|
||
|
def _outside_call_impl(*args, **params):
|
||
|
assert "has_token" not in params
|
||
|
if _inline_host_callback():
|
||
|
device_index = params["device_index"]
|
||
|
device = xb.devices()[device_index]
|
||
|
results = _outside_call_run_callback(args, device, send_infeed=False, **params)
|
||
|
return results
|
||
|
else:
|
||
|
# We use the jitted-version of the primitive even for eager execution, both
|
||
|
# so that we do not duplicate logic, but also so that all outfeed is received
|
||
|
# by the outfeed_listeners, in the same thread from a given device. If we were
|
||
|
# to process the tap here, it would be coming from the main thread. Also,
|
||
|
# even in eager execution some primitives, such as while, are compiled.
|
||
|
# It would be confusing to process a sequence "id_tap; while" in two
|
||
|
# different threads.
|
||
|
return dispatch.apply_primitive(outside_call_p, *args, **params)
|
||
|
|
||
|
|
||
|
outside_call_p.def_impl(_outside_call_impl)
|
||
|
|
||
|
|
||
|
def _outside_call_translation_rule(ctx,
|
||
|
avals_in,
|
||
|
avals_out,
|
||
|
*args_op: XlaOp,
|
||
|
has_token,
|
||
|
identity,
|
||
|
device_index,
|
||
|
flat_results_aval=(),
|
||
|
**params):
|
||
|
# We expect the current tokens at the end, inserted by _rewrite_jaxpr.
|
||
|
assert has_token
|
||
|
current_token = args_op[-2]
|
||
|
current_itoken = args_op[-1]
|
||
|
comp = ctx.builder
|
||
|
assert comp.get_shape(current_token).is_token() and comp.get_shape(current_itoken).is_token(), (
|
||
|
"The last two arguments must be tokens")
|
||
|
|
||
|
args_to_outfeed = args_op[:-2]
|
||
|
# Some platforms refuse to infeed empty arrays. We generate constants
|
||
|
# instead.
|
||
|
non_empty_flat_results_aval = list(filter(lambda aval: not (_aval_is_empty(aval)),
|
||
|
flat_results_aval))
|
||
|
need_callback_results_on_device = (not identity and
|
||
|
len(non_empty_flat_results_aval) > 0)
|
||
|
use_outfeed = _use_outfeed(ctx.platform)
|
||
|
# TODO(sharadmv): Delete non-outfeed path when jaxlib minimum version is
|
||
|
# bumped past 0.3.8.
|
||
|
assert use_outfeed, 'Should be using MLIR path for `CustomCall` lowering'
|
||
|
send_infeed = use_outfeed and need_callback_results_on_device
|
||
|
generated_infeed = False # Keep track if we emitted an infeed op
|
||
|
if use_outfeed:
|
||
|
_raise_if_using_outfeed_with_pjrt_c_api(xb.get_backend(ctx.platform))
|
||
|
callback_id = _register_callback(
|
||
|
functools.partial(
|
||
|
_outside_call_run_callback,
|
||
|
send_infeed=send_infeed,
|
||
|
identity=identity,
|
||
|
flat_results_aval=flat_results_aval,
|
||
|
**params))
|
||
|
next_token = _callback_handler_data.receiver.add_outfeed(
|
||
|
comp, current_token, callback_id, args_to_outfeed, device_index)
|
||
|
if identity:
|
||
|
results = list(args_to_outfeed)
|
||
|
next_itoken = current_itoken
|
||
|
else:
|
||
|
empty_results = [
|
||
|
xops.ConstantLiteral(comp, np.zeros(aval.shape, aval.dtype))
|
||
|
for aval in flat_results_aval
|
||
|
if _aval_is_empty(aval)
|
||
|
]
|
||
|
if non_empty_flat_results_aval:
|
||
|
assert need_callback_results_on_device
|
||
|
after_outfeed_itoken = xops.AfterAll(comp, [current_itoken, next_token])
|
||
|
# We shard the infeed as AssignedDevice(device_index). This must match the
|
||
|
# outfeed (from outfeed_receiver.cc). Since `lax.infeed` does not support
|
||
|
# this kind of sharding, we use a custom translation for infeed.
|
||
|
array_sharding_proto = xla_client.OpSharding()
|
||
|
array_sharding_proto.type = xla_client.OpSharding.Type.MAXIMAL
|
||
|
array_sharding_proto.tile_assignment_dimensions = [1]
|
||
|
array_sharding_proto.tile_assignment_devices = [device_index]
|
||
|
|
||
|
token_sharding_proto = xla_client.OpSharding()
|
||
|
token_sharding_proto.type = xla_client.OpSharding.Type.REPLICATED
|
||
|
infeed_sharding_proto = xla.tuple_sharding_proto(
|
||
|
[array_sharding_proto] * len(non_empty_flat_results_aval) +
|
||
|
[token_sharding_proto])
|
||
|
|
||
|
shape = [
|
||
|
shape.with_major_to_minor_layout_if_absent()
|
||
|
for x in non_empty_flat_results_aval
|
||
|
for shape in xla.aval_to_xla_shapes(x)
|
||
|
]
|
||
|
|
||
|
build_infeed = functools.partial(xops.InfeedWithToken,
|
||
|
after_outfeed_itoken,
|
||
|
xla_client.Shape.tuple_shape(shape))
|
||
|
outs_and_token = xla.with_sharding_proto(comp, infeed_sharding_proto,
|
||
|
build_infeed)
|
||
|
outs = xops.GetTupleElement(outs_and_token, 0)
|
||
|
next_itoken = xops.GetTupleElement(outs_and_token, 1)
|
||
|
non_empty_results = [
|
||
|
xops.GetTupleElement(outs, i)
|
||
|
for i in range(len(non_empty_flat_results_aval))
|
||
|
]
|
||
|
generated_infeed = True
|
||
|
results = [
|
||
|
empty_results.pop(0)
|
||
|
if _aval_is_empty(result_aval) else non_empty_results.pop(0)
|
||
|
for result_aval in flat_results_aval
|
||
|
]
|
||
|
else:
|
||
|
results = empty_results
|
||
|
next_itoken = current_itoken
|
||
|
|
||
|
else: # !use_outfeed : CustomCall implementation
|
||
|
if device_index != 0:
|
||
|
raise ValueError("The device_index feature works only when using outfeed.")
|
||
|
|
||
|
# TODO(necula): this is a weak attempt to get the device. This works
|
||
|
# inside pmap, but does not work when we just execute on a single device,
|
||
|
# because in such executions we always get replica_id == 0.
|
||
|
replica_id = xla_client.ops.ReplicaId(comp)
|
||
|
callback_operands = (current_token, replica_id) + args_to_outfeed
|
||
|
if identity:
|
||
|
callback_flat_results_aval = (core.abstract_token,)
|
||
|
else:
|
||
|
callback_flat_results_aval = (core.abstract_token,) + flat_results_aval
|
||
|
|
||
|
def wrapped_callback(*args):
|
||
|
token, replica_id, *arrays = args
|
||
|
result_arrays = _outside_call_run_callback(
|
||
|
arrays,
|
||
|
xb.local_devices()[replica_id],
|
||
|
send_infeed=False,
|
||
|
# The same parameters as outside_call_p
|
||
|
identity=identity,
|
||
|
flat_results_aval=flat_results_aval,
|
||
|
**params)
|
||
|
if identity:
|
||
|
# For identity, we do not pass the any results back to the device
|
||
|
result_arrays = ()
|
||
|
return (token,) + result_arrays
|
||
|
|
||
|
result_shapes = [
|
||
|
xla.aval_to_xla_shapes(res_aval)[0]
|
||
|
for res_aval in callback_flat_results_aval
|
||
|
]
|
||
|
backend = ctx.module_context.backend
|
||
|
token_and_results_op, keep_alive = backend.emit_python_callback(
|
||
|
wrapped_callback,
|
||
|
comp,
|
||
|
callback_operands,
|
||
|
result_shapes,
|
||
|
operand_layouts=None,
|
||
|
has_side_effects=True)
|
||
|
_callback_handler_data.keep_alives.append(keep_alive)
|
||
|
next_token, *results = (xops.GetTupleElement(token_and_results_op, i)
|
||
|
for i in range(len(callback_flat_results_aval)))
|
||
|
# We must put the two tokens at the end
|
||
|
if identity:
|
||
|
results = list(args_to_outfeed)
|
||
|
next_itoken = current_itoken
|
||
|
|
||
|
assert generated_infeed == send_infeed, (
|
||
|
f"generated_infeed ({generated_infeed}) != send_infeed ({send_infeed})")
|
||
|
assert identity or len(results) == len(flat_results_aval), (
|
||
|
f"got {len(results)} but expected {len(flat_results_aval)}. "
|
||
|
f"identity = {identity}")
|
||
|
return results + [next_token, next_itoken]
|
||
|
|
||
|
|
||
|
xla.register_translation(outside_call_p, _outside_call_translation_rule)
|
||
|
|
||
|
|
||
|
def _outside_call_lowering(ctx: mlir.LoweringRuleContext,
|
||
|
*args,
|
||
|
has_token: bool,
|
||
|
identity: bool,
|
||
|
device_index: int,
|
||
|
flat_results_aval=(),
|
||
|
**params):
|
||
|
"""MLIR Lowering for `CustomCall`-based HCB."""
|
||
|
platform = ctx.module_context.platform
|
||
|
use_outfeed = _use_outfeed(platform)
|
||
|
if use_outfeed:
|
||
|
# Fall back to XLA path if we are using the outfeed
|
||
|
# TODO(sharadmv): update to use MLIR for this path as well and delete
|
||
|
# XLA lowering
|
||
|
return mlir.xla_fallback_lowering(outside_call_p)(
|
||
|
ctx,
|
||
|
*args,
|
||
|
has_token=has_token,
|
||
|
identity=identity,
|
||
|
flat_results_aval=flat_results_aval,
|
||
|
device_index=device_index,
|
||
|
**params)
|
||
|
else:
|
||
|
if device_index != 0:
|
||
|
raise ValueError("The device_index feature works only when using outfeed.")
|
||
|
# We expect the current tokens at the end, inserted by _rewrite_jaxpr.
|
||
|
assert has_token
|
||
|
current_token = args[-2]
|
||
|
current_itoken = args[-1]
|
||
|
assert current_token.type == hlo.TokenType.get(), "The last two arguments must be tokens"
|
||
|
assert current_itoken.type == hlo.TokenType.get(), "The last two arguments must be tokens"
|
||
|
|
||
|
args_to_outfeed = args[:-2]
|
||
|
# TODO(necula): this is a weak attempt to get the device. This works
|
||
|
# inside pmap, but does not work when we just execute on a single device,
|
||
|
# because in such executions we always get replica_id == 0.
|
||
|
replica_id = hlo.ReplicaIdOp()
|
||
|
callback_operands = [replica_id, *args_to_outfeed]
|
||
|
callback_operand_avals = [
|
||
|
core.ShapedArray((), np.uint32), *ctx.avals_in[:-2]]
|
||
|
if identity:
|
||
|
callback_flat_results_aval = []
|
||
|
else:
|
||
|
callback_flat_results_aval = [*flat_results_aval]
|
||
|
|
||
|
def wrapped_callback(*args):
|
||
|
replica_id, *arrays = args
|
||
|
result_arrays = _outside_call_run_callback(
|
||
|
arrays,
|
||
|
xb.local_devices()[replica_id],
|
||
|
send_infeed=False,
|
||
|
# The same parameters as outside_call_p
|
||
|
identity=identity,
|
||
|
flat_results_aval=flat_results_aval,
|
||
|
**params)
|
||
|
if identity:
|
||
|
# For identity, we do not pass the any results back to the device
|
||
|
result_arrays = ()
|
||
|
return result_arrays
|
||
|
|
||
|
if isinstance(
|
||
|
ctx.module_context.axis_context,
|
||
|
(sharding_impls.SPMDAxisContext, sharding_impls.ShardingContext),
|
||
|
):
|
||
|
# Apply maximal sharding so pjit only executes the callback on device device_index.
|
||
|
sharding = xla_client.OpSharding()
|
||
|
sharding.type = xla_client.OpSharding.Type.MAXIMAL
|
||
|
sharding.tile_assignment_dimensions = [1]
|
||
|
sharding.tile_assignment_devices = [device_index]
|
||
|
else:
|
||
|
sharding = None
|
||
|
results, next_token, keep_alive = mlir.emit_python_callback(ctx,
|
||
|
wrapped_callback, current_token, callback_operands,
|
||
|
callback_operand_avals, callback_flat_results_aval, # type: ignore[arg-type]
|
||
|
has_side_effect=True, sharding=sharding)
|
||
|
_callback_handler_data.keep_alives.append(keep_alive)
|
||
|
# We must put the two tokens at the end
|
||
|
if identity:
|
||
|
results = list(args_to_outfeed)
|
||
|
next_itoken = current_itoken
|
||
|
|
||
|
assert identity or len(results) == len(flat_results_aval), (
|
||
|
f"got {len(results)} but expected {len(flat_results_aval)}. "
|
||
|
f"identity = {identity}")
|
||
|
return results + [next_token, next_itoken]
|
||
|
|
||
|
mlir.register_lowering(outside_call_p, _outside_call_lowering, platform="cpu")
|
||
|
|
||
|
def _outside_call_run_callback(
|
||
|
arrays, device, *,
|
||
|
send_infeed=True,
|
||
|
# The same parameters as outside_call_p
|
||
|
callback, arg_treedef,
|
||
|
identity, result_treedef=None, flat_results_aval=None,
|
||
|
transforms=(), has_token=False):
|
||
|
"""Performs the callback:
|
||
|
callback(arg, device, transforms)
|
||
|
|
||
|
Called during the device computation once we have the argument, either from
|
||
|
an inlined callback or from an XLA computation outfeed.
|
||
|
|
||
|
Returns the flat list of result arrays. If `send_infeed` then it will also send
|
||
|
the flat list of results to the device.
|
||
|
"""
|
||
|
|
||
|
def _unpack_transforms(transforms) -> Tuple[Tuple[str, Dict[str, Any]], ...]:
|
||
|
def _unpack_transform(name, *params):
|
||
|
if name == "batch":
|
||
|
return name, dict(batch_dims=params[0])
|
||
|
elif name == "mask":
|
||
|
return name, dict(logical_shapes=5)
|
||
|
else:
|
||
|
assert not params, f"{name}, {params}"
|
||
|
return name, dict()
|
||
|
|
||
|
return tuple(_unpack_transform(*t) for t in transforms)
|
||
|
|
||
|
try:
|
||
|
arg = api.tree_unflatten(arg_treedef, arrays)
|
||
|
unpacked_transforms = _unpack_transforms(transforms)
|
||
|
logger.debug(
|
||
|
"Outside call invoking call_func %s, device=%s, transforms=%s",
|
||
|
callback, device, unpacked_transforms
|
||
|
)
|
||
|
res = callback(arg, device, unpacked_transforms)
|
||
|
if identity:
|
||
|
return tuple(arrays)
|
||
|
|
||
|
else: # Check the type of the callback results
|
||
|
assert result_treedef is not None
|
||
|
assert flat_results_aval is not None
|
||
|
actual_flat_results, actual_result_treedef = pytree.flatten(res)
|
||
|
if actual_result_treedef != result_treedef:
|
||
|
msg = (f"Callback func {callback} should have returned a result "
|
||
|
f"with pytree {result_treedef} but returned "
|
||
|
f"{actual_result_treedef}")
|
||
|
raise TypeError(msg)
|
||
|
|
||
|
canonical_flat_results = tuple(util.safe_map(xla.canonicalize_dtype, actual_flat_results))
|
||
|
actual_flat_results_aval = _values_to_avals(canonical_flat_results)
|
||
|
logger.debug(
|
||
|
"Outside call %s result %s. Sending to infeed for device %s.",
|
||
|
callback, flat_results_aval, device,
|
||
|
)
|
||
|
|
||
|
if not all(ea.strip_weak_type() == ra.strip_weak_type()
|
||
|
for ea, ra in util.safe_zip(flat_results_aval,
|
||
|
actual_flat_results_aval)):
|
||
|
msg = (f"Callback func {callback} should have returned a result "
|
||
|
"with abstract values "
|
||
|
f"{result_treedef.unflatten(flat_results_aval)} "
|
||
|
f"but returned {actual_result_treedef.unflatten(actual_flat_results_aval)}")
|
||
|
raise TypeError(msg)
|
||
|
|
||
|
if send_infeed:
|
||
|
# Do not send the 0-sized arrays
|
||
|
non_empty_canonical_flat_results = tuple(filter(lambda r: not _aval_is_empty(r),
|
||
|
canonical_flat_results))
|
||
|
device.transfer_to_infeed(non_empty_canonical_flat_results)
|
||
|
return canonical_flat_results
|
||
|
|
||
|
except Exception as e:
|
||
|
logger.error("Outside call %s threw exception %s.", callback, e)
|
||
|
if send_infeed:
|
||
|
# Prepare some results to send in case of error. We are sending something
|
||
|
# with a distinctive shape (int8[12345]), one that is unlikely to be what the device
|
||
|
# expects. This should have the effect to abort the device computation,
|
||
|
# with an error message that we recognize. On TPU there seem to be no
|
||
|
# such check, and if we send anything at all the device computation will
|
||
|
# use some garbage data. So, on TPU we prefer to not send anything and let
|
||
|
# the computation hang.
|
||
|
# TODO: implement a proper error handling for TPU
|
||
|
if device.platform != "tpu":
|
||
|
canonical_flat_results = [xla.canonicalize_dtype(np.arange(12345, dtype=np.int8))]
|
||
|
logger.debug("Outside call consumer %s exception %s. Sending to infeed the error result.",
|
||
|
callback, e)
|
||
|
device.transfer_to_infeed(tuple(canonical_flat_results))
|
||
|
else:
|
||
|
logger.debug("Outside call consumer %s exception %s. On TPU we do not send infeed.",
|
||
|
callback, e)
|
||
|
raise e # Let the exception propagate
|
||
|
|
||
|
|
||
|
def _add_transform(params: Dict, name: str, *transform_params) -> Dict:
|
||
|
"""Adds the `transform` to the params["transforms"].
|
||
|
|
||
|
Uses a tuple representation internally, will be unpacked before the
|
||
|
callback by _ConsumerCallable.
|
||
|
"""
|
||
|
new_transform = (name, *transform_params)
|
||
|
return dict(
|
||
|
params, transforms=(params.get("transforms", ()) + (new_transform,)))
|
||
|
|
||
|
|
||
|
def _aval_is_empty(aval) -> bool:
|
||
|
return math.prod(aval.shape) == 0
|
||
|
|
||
|
def _instantiate_zeros(tan, arg):
|
||
|
"""Turn special ad.zero tangents into arrays of 0s for sending to host.
|
||
|
Args:
|
||
|
tan: the tangent.
|
||
|
arg: the argument for which we need to instantiate the tangent
|
||
|
|
||
|
Returns: tan if is is not ad.Zero, otherwise a 0 array of appropriate type
|
||
|
and shape
|
||
|
"""
|
||
|
if type(tan) is not ad.Zero:
|
||
|
return tan
|
||
|
return ad.instantiate_zeros_aval(tan.aval, tan)
|
||
|
|
||
|
def _outside_call_jvp_rule(primals, tangents, **params):
|
||
|
assert "has_token" not in params
|
||
|
if not params["identity"]:
|
||
|
raise NotImplementedError("JVP rule is implemented only for id_tap, not for call.")
|
||
|
if FLAGS.jax_host_callback_ad_transforms:
|
||
|
tangents_instantiated = tuple(map(_instantiate_zeros, tangents, primals))
|
||
|
|
||
|
arg_treedef = params["arg_treedef"]
|
||
|
# The argument to the jvp tap is a pair of the tapped primals and tangents
|
||
|
jvp_flat_args, jvp_arg_treedef = api.tree_flatten(
|
||
|
(arg_treedef.unflatten(primals),
|
||
|
arg_treedef.unflatten(tangents_instantiated)))
|
||
|
out_all = outside_call_p.bind(
|
||
|
*jvp_flat_args,
|
||
|
**dict(_add_transform(params, "jvp"),
|
||
|
arg_treedef=jvp_arg_treedef,
|
||
|
))
|
||
|
out_primals_tapped, out_tangents_tapped = util.split_list(out_all, [len(primals)])
|
||
|
return tuple(out_primals_tapped), tuple(out_tangents_tapped)
|
||
|
else:
|
||
|
out_primals_tapped = outside_call_p.bind(*primals, **params)
|
||
|
return tuple(out_primals_tapped), tangents
|
||
|
|
||
|
|
||
|
ad.primitive_jvps[outside_call_p] = _outside_call_jvp_rule
|
||
|
|
||
|
|
||
|
def _outside_call_partial_eval_rule(trace, *args, **params):
|
||
|
# partial eval is used after jvp and before transpose.
|
||
|
if not FLAGS.jax_host_callback_ad_transforms:
|
||
|
# TODO: just remote the partial eval rule
|
||
|
return trace.default_process_primitive(outside_call_p, args, params)
|
||
|
transforms = params.get("transforms", ())
|
||
|
if not transforms or transforms[-1] != ("jvp",):
|
||
|
# We are not in the process of computing VJP
|
||
|
return trace.default_process_primitive(outside_call_p, args, params)
|
||
|
|
||
|
# The args have been prepared by the id_tap_jvp_rule: primals, tangents. The
|
||
|
# result is a pair of the primal outputs and output tangents.
|
||
|
# One invariant that JAX requires is that if the primals arguments are known
|
||
|
# then the primal outputs must be known. So, if the primal arguments are known
|
||
|
# and some of the tangents are unknown, then we must split the tap into
|
||
|
# one for the primals (thus the output will be considered known), and a
|
||
|
# separate tap for the tangents.
|
||
|
assert "has_token" not in params
|
||
|
if not params["identity"]:
|
||
|
raise NotImplementedError("differentiation rules are implemented only for id_tap, not for call.")
|
||
|
|
||
|
assert len(args) % 2 == 0
|
||
|
nr_primals = len(args) // 2
|
||
|
primals, tangents = util.split_list(args, [nr_primals])
|
||
|
all_primals_known = all(p.is_known() for p in primals)
|
||
|
some_tangents_unknown = any(not t.is_known() for t in tangents)
|
||
|
|
||
|
if not (all_primals_known and some_tangents_unknown):
|
||
|
return trace.default_process_primitive(outside_call_p, args, params)
|
||
|
|
||
|
prims, _ = params["arg_treedef"].unflatten(args)
|
||
|
_, primals_treedef = api.tree_flatten(prims)
|
||
|
|
||
|
outs_known = trace.default_process_primitive(
|
||
|
outside_call_p, primals,
|
||
|
dict(params,
|
||
|
arg_treedef=primals_treedef,
|
||
|
transforms=transforms[:-1]))
|
||
|
# Now compute the unknowns using the whole tap, and merge them with the tapped ones
|
||
|
outs_all_unknown = trace.default_process_primitive(outside_call_p, args, params)
|
||
|
outs_primals_unknown, outs_tangents_unknown = util.split_list(
|
||
|
outs_all_unknown, [nr_primals])
|
||
|
outs_combined = (
|
||
|
[pe.JaxprTracer(trace, pe.PartialVal.known(primal_known),
|
||
|
primal_unknown.recipe)
|
||
|
for primal_known, primal_unknown in util.safe_zip(outs_known, outs_primals_unknown)] +
|
||
|
outs_tangents_unknown)
|
||
|
return tuple(outs_combined)
|
||
|
|
||
|
|
||
|
pe.custom_partial_eval_rules[outside_call_p] = _outside_call_partial_eval_rule
|
||
|
|
||
|
|
||
|
def _outside_call_transpose_rule(cts, *args, **params):
|
||
|
if not params["identity"]:
|
||
|
raise NotImplementedError("differentiation rules are implemented only for id_tap, not for call.")
|
||
|
assert "has_token" not in params
|
||
|
assert len(cts) == len(args)
|
||
|
cts_instantiated = tuple(map(_instantiate_zeros, cts, args))
|
||
|
|
||
|
# The args have been prepared by the id_tap_jvp_rule: tapped_primals, tapped_tangents, rest_primals, rest_tangents
|
||
|
transforms = params.get("transforms", ())
|
||
|
if not transforms or transforms[-1] != ("jvp",):
|
||
|
# TODO: I should understand better when can this happen. It seems to arise
|
||
|
# in scan.
|
||
|
return outside_call_p.bind(
|
||
|
*cts_instantiated,
|
||
|
**_add_transform(params, "transpose"))
|
||
|
|
||
|
if not FLAGS.jax_host_callback_ad_transforms:
|
||
|
assert False
|
||
|
|
||
|
assert len(args) % 2 == 0
|
||
|
nr_primals = len(args) // 2
|
||
|
|
||
|
args_unflat, tan_unflat = params["arg_treedef"].unflatten(args)
|
||
|
_, vjp_arg_treedef = api.tree_flatten(args_unflat)
|
||
|
# We want to tap the cts_tapped_tangents
|
||
|
cts_primals, cts_tangents = util.split_list(cts_instantiated, [nr_primals])
|
||
|
cts_tangents_through_tap = outside_call_p.bind(
|
||
|
*cts_tangents,
|
||
|
**dict(_add_transform(params, "transpose"),
|
||
|
arg_treedef=vjp_arg_treedef))
|
||
|
return cts_primals + cts_tangents_through_tap
|
||
|
|
||
|
|
||
|
ad.primitive_transposes[outside_call_p] = _outside_call_transpose_rule
|
||
|
|
||
|
|
||
|
def _outside_call_batching_rule(batched_args, batch_dims, **params):
|
||
|
if not params["identity"]:
|
||
|
raise NotImplementedError("batching rules are implemented only for id_tap, not for call.")
|
||
|
assert "has_token" not in params
|
||
|
new_params = _add_transform(params, "batch", batch_dims)
|
||
|
res = outside_call_p.bind(*batched_args, **new_params)
|
||
|
return res, batch_dims
|
||
|
|
||
|
|
||
|
batching.primitive_batchers[outside_call_p] = _outside_call_batching_rule
|
||
|
|
||
|
####
|
||
|
#### Jaxpr rewriting logic to thread the tokens through stateful primitives.
|
||
|
####
|
||
|
|
||
|
|
||
|
def _rewrite_closed_jaxpr(cjaxpr: core.ClosedJaxpr, has_input_token: bool,
|
||
|
has_output_token: bool) -> core.ClosedJaxpr:
|
||
|
"""Rewrites a ClosedJaxpr to thread the token, if needed."""
|
||
|
new_jaxpr = _rewrite_jaxpr(cjaxpr.jaxpr, has_input_token, has_output_token)
|
||
|
return core.ClosedJaxpr(new_jaxpr, cjaxpr.consts)
|
||
|
|
||
|
|
||
|
def _rewrite_jaxpr(jaxpr: core.Jaxpr, has_input_token: bool,
|
||
|
has_output_token: bool) -> core.Jaxpr:
|
||
|
"""Rewrite a Jaxpr to thread the token, if needed."""
|
||
|
assert has_input_token or not has_output_token
|
||
|
|
||
|
if not has_input_token and not core.jaxpr_uses_outfeed(jaxpr):
|
||
|
return jaxpr
|
||
|
|
||
|
mk_new_var = core.gensym([jaxpr])
|
||
|
|
||
|
eqns: List[core.JaxprEqn] = []
|
||
|
# store the incoming tokens
|
||
|
last_token_var = mk_new_var(core.abstract_token)
|
||
|
last_itoken_var = mk_new_var(core.abstract_token)
|
||
|
if has_input_token:
|
||
|
invars = jaxpr.invars + [last_token_var, last_itoken_var]
|
||
|
else:
|
||
|
invars = jaxpr.invars
|
||
|
# We need tokens but none is given in input; make one depending on all invars
|
||
|
eqns.append(
|
||
|
core.new_jaxpr_eqn(jaxpr.invars, [last_token_var],
|
||
|
lax.create_token_p, {}, core.no_effects, source_info_util.current()))
|
||
|
eqns.append(
|
||
|
core.new_jaxpr_eqn(jaxpr.invars, [last_itoken_var],
|
||
|
lax.create_token_p, {}, core.no_effects, source_info_util.current()))
|
||
|
|
||
|
for eqn in jaxpr.eqns:
|
||
|
if not core.primitive_uses_outfeed(eqn.primitive, eqn.params):
|
||
|
eqns.append(eqn)
|
||
|
else:
|
||
|
output_token_var = mk_new_var(last_token_var.aval)
|
||
|
output_itoken_var = mk_new_var(last_itoken_var.aval)
|
||
|
_rewrite_eqn(eqn, eqns, last_token_var, output_token_var,
|
||
|
last_itoken_var, output_itoken_var, mk_new_var)
|
||
|
last_token_var = output_token_var
|
||
|
last_itoken_var = output_itoken_var
|
||
|
|
||
|
outvars = jaxpr.outvars + ([last_token_var, last_itoken_var] if has_output_token else [])
|
||
|
new_jaxpr = core.Jaxpr(jaxpr.constvars, invars, outvars, eqns, jaxpr.effects)
|
||
|
return new_jaxpr
|
||
|
|
||
|
|
||
|
def _rewrite_eqn(eqn: core.JaxprEqn, eqns: List[core.JaxprEqn],
|
||
|
input_token_var: core.Var, output_token_var: core.Var,
|
||
|
input_itoken_var: core.Var, output_itoken_var: core.Var,
|
||
|
mk_new_var: Callable[[core.AbstractValue], core.Var]):
|
||
|
"""Rewrite an `eqn` and append equations to `eqns`.
|
||
|
|
||
|
This is only called if the current primitive uses outfeed.
|
||
|
Assume that the current token is in `input_token_var` and the resulting
|
||
|
token must end in `output_token_var`.
|
||
|
|
||
|
Append the result of rewriting to `eqns`.
|
||
|
"""
|
||
|
if eqn.primitive is outside_call_p:
|
||
|
assert "has_token" not in eqn.params
|
||
|
eqns.append(eqn.replace(invars=eqn.invars + [input_token_var, input_itoken_var],
|
||
|
outvars=eqn.outvars + [output_token_var, output_itoken_var],
|
||
|
params=dict(eqn.params, has_token=True)))
|
||
|
elif eqn.primitive is lax.while_p:
|
||
|
cond_jaxpr, _, body_jaxpr, _ = util.split_dict(
|
||
|
eqn.params,
|
||
|
["cond_jaxpr", "cond_nconsts", "body_jaxpr", "body_nconsts"])
|
||
|
if core.jaxpr_uses_outfeed(cond_jaxpr.jaxpr):
|
||
|
_rewrite_while_outfeed_cond(eqn, eqns, input_token_var, output_token_var,
|
||
|
input_itoken_var, output_itoken_var,
|
||
|
mk_new_var)
|
||
|
return
|
||
|
|
||
|
eqns.append(
|
||
|
eqn.replace(
|
||
|
invars=eqn.invars + [input_token_var, input_itoken_var],
|
||
|
outvars=eqn.outvars + [output_token_var, output_itoken_var],
|
||
|
params=dict(
|
||
|
eqn.params,
|
||
|
body_jaxpr=_rewrite_closed_jaxpr(body_jaxpr, True, True),
|
||
|
cond_jaxpr=_rewrite_closed_jaxpr(cond_jaxpr, True, False))))
|
||
|
elif eqn.primitive is lax.cond_p:
|
||
|
branches, linear = util.split_dict(eqn.params, ["branches", "linear"])
|
||
|
index, *operands = eqn.invars
|
||
|
new_invars = [index, *operands, input_token_var, input_itoken_var]
|
||
|
eqns.append(
|
||
|
eqn.replace(
|
||
|
invars=new_invars, outvars=eqn.outvars + [output_token_var, output_itoken_var],
|
||
|
params=dict(
|
||
|
eqn.params,
|
||
|
branches=tuple(
|
||
|
_rewrite_closed_jaxpr(jaxpr, True, True)
|
||
|
for jaxpr in branches),
|
||
|
linear=(*linear, False, False))))
|
||
|
elif eqn.primitive is lax.scan_p:
|
||
|
num_consts, num_carry, carry_jaxpr, linear, _, _, _ = util.split_dict(
|
||
|
eqn.params,
|
||
|
["num_consts", "num_carry", "jaxpr", "linear", "reverse", "length",
|
||
|
"unroll"])
|
||
|
# We add the tokens right at the end of carry
|
||
|
nr_const_and_carry = num_consts + num_carry
|
||
|
new_invars = eqn.invars[0:nr_const_and_carry] + [
|
||
|
input_token_var, input_itoken_var] + eqn.invars[nr_const_and_carry:]
|
||
|
new_jaxpr = _rewrite_closed_jaxpr(carry_jaxpr, True, True)
|
||
|
# The rewrite has put the token at end, it has to be at end of carry
|
||
|
new_jaxpr_invars = new_jaxpr.jaxpr.invars
|
||
|
new_jaxpr_invars = (
|
||
|
new_jaxpr_invars[0:nr_const_and_carry] + new_jaxpr_invars[-2:] +
|
||
|
new_jaxpr_invars[nr_const_and_carry:-2])
|
||
|
new_jaxpr = new_jaxpr.replace(jaxpr=new_jaxpr.jaxpr.replace(invars=new_jaxpr_invars))
|
||
|
|
||
|
new_jaxpr_outvars = new_jaxpr.jaxpr.outvars
|
||
|
new_jaxpr_outvars = (
|
||
|
new_jaxpr_outvars[0:num_carry] + new_jaxpr_outvars[-2:] +
|
||
|
new_jaxpr_outvars[num_carry:-2])
|
||
|
new_jaxpr = new_jaxpr.replace(jaxpr=new_jaxpr.jaxpr.replace(outvars=new_jaxpr_outvars))
|
||
|
eqns.append(
|
||
|
eqn.replace(
|
||
|
invars=new_invars,
|
||
|
# Output token is at the end of carry result
|
||
|
outvars=(eqn.outvars[0:num_carry] + [output_token_var, output_itoken_var] +
|
||
|
eqn.outvars[num_carry:]),
|
||
|
params=dict(
|
||
|
eqn.params,
|
||
|
jaxpr=new_jaxpr,
|
||
|
num_carry=num_carry + 2,
|
||
|
linear=linear[0:nr_const_and_carry] + (False, False) + linear[nr_const_and_carry:])))
|
||
|
elif eqn.primitive is pxla.xla_pmap_p:
|
||
|
# We broadcast the input token into an array of tokens
|
||
|
call_jaxpr = cast(core.Jaxpr, eqn.params["call_jaxpr"])
|
||
|
eqns.append(
|
||
|
eqn.replace(
|
||
|
invars=eqn.invars + [input_token_var, input_itoken_var],
|
||
|
outvars=eqn.outvars + [output_token_var, output_itoken_var],
|
||
|
params=dict(
|
||
|
eqn.params,
|
||
|
call_jaxpr=_rewrite_jaxpr(call_jaxpr, True, True),
|
||
|
donated_invars=eqn.params["donated_invars"] + (False, False),
|
||
|
# Sharding/unsharding of tokens in pmap_translation are special
|
||
|
# cased to just pass-through the token
|
||
|
in_axes=eqn.params["in_axes"] + (None, None),
|
||
|
out_axes=eqn.params["out_axes"] + (0, 0))))
|
||
|
elif eqn.primitive is custom_derivatives.custom_jvp_call_p:
|
||
|
fun_jaxpr = eqn.params["call_jaxpr"]
|
||
|
|
||
|
def unreachable_thunk():
|
||
|
assert False, "Should not be reached"
|
||
|
|
||
|
eqns.append(
|
||
|
eqn.replace(
|
||
|
invars=eqn.invars + [input_token_var, input_itoken_var],
|
||
|
outvars=eqn.outvars + [output_token_var, output_itoken_var],
|
||
|
params=dict(
|
||
|
eqn.params,
|
||
|
call_jaxpr=_rewrite_closed_jaxpr(fun_jaxpr, True, True),
|
||
|
jvp_jaxpr_thunk=unreachable_thunk
|
||
|
)))
|
||
|
elif eqn.primitive is custom_derivatives.custom_vjp_call_jaxpr_p:
|
||
|
fun_jaxpr = eqn.params["fun_jaxpr"]
|
||
|
new_invars = [*eqn.invars, input_token_var, input_itoken_var]
|
||
|
|
||
|
def unreachable_thunk():
|
||
|
assert False, "Should not be reached"
|
||
|
|
||
|
eqns.append(
|
||
|
eqn.replace(
|
||
|
invars=new_invars,
|
||
|
outvars=eqn.outvars + [output_token_var, output_itoken_var],
|
||
|
params=dict(
|
||
|
eqn.params,
|
||
|
fun_jaxpr=_rewrite_closed_jaxpr(fun_jaxpr, True, True),
|
||
|
fwd_jaxpr_thunk=unreachable_thunk,
|
||
|
# The following are illegal values for the parameters, they
|
||
|
# should not be needed because this rewrite is just before
|
||
|
# compilation to XLA, which does not use those parameters.
|
||
|
bwd="illegal param",
|
||
|
out_trees="illegal param")))
|
||
|
elif eqn.primitive is pjit.pjit_p:
|
||
|
jaxpr = cast(core.ClosedJaxpr, eqn.params["jaxpr"])
|
||
|
eqns.append(
|
||
|
eqn.replace(
|
||
|
invars=eqn.invars + [input_token_var, input_itoken_var],
|
||
|
outvars=eqn.outvars + [output_token_var, output_itoken_var],
|
||
|
params=dict(
|
||
|
eqn.params,
|
||
|
jaxpr=_rewrite_closed_jaxpr(jaxpr, True, True),
|
||
|
donated_invars=eqn.params["donated_invars"] + (False, False),
|
||
|
in_shardings=(
|
||
|
eqn.params["in_shardings"]
|
||
|
+ (sharding_impls.UNSPECIFIED, sharding_impls.UNSPECIFIED)
|
||
|
),
|
||
|
out_shardings=(
|
||
|
eqn.params["out_shardings"]
|
||
|
+ (sharding_impls.UNSPECIFIED, sharding_impls.UNSPECIFIED)
|
||
|
),
|
||
|
),
|
||
|
)
|
||
|
)
|
||
|
elif eqn.primitive is ad_checkpoint.remat_p:
|
||
|
jaxpr_ = cast(core.Jaxpr, eqn.params["jaxpr"])
|
||
|
eqns.append(
|
||
|
eqn.replace(
|
||
|
invars=eqn.invars + [input_token_var, input_itoken_var],
|
||
|
outvars=eqn.outvars + [output_token_var, output_itoken_var],
|
||
|
params=dict(
|
||
|
eqn.params,
|
||
|
jaxpr=_rewrite_jaxpr(jaxpr_, True, True),
|
||
|
)))
|
||
|
else:
|
||
|
raise NotImplementedError(f"outfeed rewrite {eqn.primitive}")
|
||
|
|
||
|
|
||
|
def _rewrite_while_outfeed_cond(eqn: core.JaxprEqn, eqns: List[core.JaxprEqn],
|
||
|
input_token_var: core.Var,
|
||
|
output_token_var: core.Var,
|
||
|
input_itoken_var: core.Var,
|
||
|
output_itoken_var: core.Var,
|
||
|
mk_new_var: Callable):
|
||
|
"""Rewrite a while whose cond has outfeed"""
|
||
|
cond_jaxpr, cond_nconsts, body_jaxpr, body_nconsts = util.split_dict(
|
||
|
eqn.params, ["cond_jaxpr", "cond_nconsts", "body_jaxpr", "body_nconsts"])
|
||
|
transformed_cond_jaxpr = _rewrite_closed_jaxpr(cond_jaxpr, True, True)
|
||
|
carry_invars = eqn.invars[cond_nconsts + body_nconsts:]
|
||
|
# pred1, token1, itoken1 = rewrite(COND)(cond_consts, carry_invars, input_token, input_itoken)
|
||
|
pred1_and_token1 = [
|
||
|
mk_new_var(ov.aval) for ov in transformed_cond_jaxpr.jaxpr.outvars
|
||
|
]
|
||
|
eqns.append(
|
||
|
core.new_jaxpr_eqn(
|
||
|
eqn.invars[0:cond_nconsts] + carry_invars + [input_token_var, input_itoken_var],
|
||
|
pred1_and_token1, core.call_p,
|
||
|
dict(
|
||
|
call_jaxpr=transformed_cond_jaxpr.jaxpr,
|
||
|
name="cond_before"),
|
||
|
transformed_cond_jaxpr.jaxpr.effects,
|
||
|
eqn.source_info))
|
||
|
# Make a new cond "lambda pred, carry, token, itoken: pred"
|
||
|
new_cond_pred_invar = mk_new_var(cond_jaxpr.out_avals[0])
|
||
|
new_cond_invars = (
|
||
|
[new_cond_pred_invar] + [mk_new_var(cv.aval) for cv in carry_invars] +
|
||
|
[mk_new_var(input_token_var.aval),
|
||
|
mk_new_var(input_itoken_var.aval)])
|
||
|
new_cond_jaxpr = core.ClosedJaxpr(
|
||
|
core.Jaxpr([], new_cond_invars, [new_cond_pred_invar], [], set()), [])
|
||
|
# Make a new body:
|
||
|
# "lambda cond_constvars, body_constvars, pred, carry, token, itoken:
|
||
|
# carry2, token2, itoken2 = rewrite(BODY)(body_constvars, carry, token, itoken)
|
||
|
# pred2, token3, itoken3 = rewrite(COND)(cond_constvars, carry2, token2, itoken2)
|
||
|
# (pred2, carry2, token3, itoken3)
|
||
|
transformed_body_jaxpr = _rewrite_closed_jaxpr(body_jaxpr, True, True)
|
||
|
new_body_invars_cond_constvars = [
|
||
|
mk_new_var(v.aval) for v in eqn.invars[0:cond_nconsts]
|
||
|
]
|
||
|
new_body_invars_body_constvars = [
|
||
|
mk_new_var(v.aval)
|
||
|
for v in eqn.invars[cond_nconsts:cond_nconsts + body_nconsts]
|
||
|
]
|
||
|
new_body_invars_pred = mk_new_var(cond_jaxpr.out_avals[0])
|
||
|
new_body_invars_carry = [mk_new_var(cv.aval) for cv in carry_invars]
|
||
|
new_body_invars_token = mk_new_var(input_token_var.aval)
|
||
|
new_body_invars_itoken = mk_new_var(input_itoken_var.aval)
|
||
|
|
||
|
new_body_carry2 = [mk_new_var(cv.aval) for cv in carry_invars]
|
||
|
new_body_token2 = mk_new_var(input_token_var.aval)
|
||
|
new_body_itoken2 = mk_new_var(input_itoken_var.aval)
|
||
|
new_body_pred2 = mk_new_var(cond_jaxpr.out_avals[0])
|
||
|
new_body_token3 = mk_new_var(input_token_var.aval)
|
||
|
new_body_itoken3 = mk_new_var(input_itoken_var.aval)
|
||
|
|
||
|
new_body_eqns = [
|
||
|
core.new_jaxpr_eqn(
|
||
|
new_body_invars_body_constvars + new_body_invars_carry +
|
||
|
[new_body_invars_token, new_body_invars_itoken],
|
||
|
new_body_carry2 + [new_body_token2, new_body_itoken2],
|
||
|
core.call_p,
|
||
|
dict(
|
||
|
call_jaxpr=transformed_body_jaxpr.jaxpr,
|
||
|
name="body"),
|
||
|
transformed_body_jaxpr.effects,
|
||
|
eqn.source_info),
|
||
|
core.new_jaxpr_eqn(
|
||
|
new_body_invars_cond_constvars + new_body_carry2 + [new_body_token2, new_body_itoken2],
|
||
|
[new_body_pred2, new_body_token3, new_body_itoken3], core.call_p,
|
||
|
dict(
|
||
|
call_jaxpr=transformed_cond_jaxpr.jaxpr,
|
||
|
name="cond_body"),
|
||
|
transformed_cond_jaxpr.effects,
|
||
|
eqn.source_info)
|
||
|
]
|
||
|
effects = core.join_effects(*(eqn.effects for eqn in new_body_eqns))
|
||
|
new_body_jaxpr = core.ClosedJaxpr(
|
||
|
core.Jaxpr([], (new_body_invars_cond_constvars +
|
||
|
new_body_invars_body_constvars + [new_body_invars_pred] +
|
||
|
new_body_invars_carry + [new_body_invars_token, new_body_invars_itoken]),
|
||
|
([new_body_pred2] + new_body_carry2 + [new_body_token3, new_body_itoken3]),
|
||
|
new_body_eqns, effects), [])
|
||
|
|
||
|
pred_out = mk_new_var(cond_jaxpr.out_avals[0])
|
||
|
eqns.append(
|
||
|
core.new_jaxpr_eqn(
|
||
|
(eqn.invars[0:cond_nconsts + body_nconsts] + [pred1_and_token1[0]] +
|
||
|
carry_invars + pred1_and_token1[1:]),
|
||
|
([pred_out] + eqn.outvars + [output_token_var, output_itoken_var]),
|
||
|
lax.while_p,
|
||
|
dict(
|
||
|
cond_jaxpr=new_cond_jaxpr,
|
||
|
cond_nconsts=0,
|
||
|
body_jaxpr=new_body_jaxpr,
|
||
|
body_nconsts=cond_nconsts + body_nconsts),
|
||
|
new_body_jaxpr.effects,
|
||
|
eqn.source_info))
|
||
|
|
||
|
|
||
|
# We need an identity primitive to simplify rewriting
|
||
|
id_p = core.Primitive("id")
|
||
|
id_p.multiple_results = True
|
||
|
id_p.def_impl(lambda *args: args)
|
||
|
id_p.def_abstract_eval(lambda *args: args)
|
||
|
xla.register_translation(id_p, lambda ctx, avals_in, avals_out, *args: args)
|
||
|
|
||
|
dispatch.outfeed_rewriter = lambda j: _rewrite_jaxpr(j, False, False)
|
||
|
|
||
|
|
||
|
class CallbackException(Exception):
|
||
|
"""Signals that some callback function had exceptions.
|
||
|
|
||
|
Raised by :func:`barrier_wait`. See the :mod:`jax.experimental.host_callback`
|
||
|
module documentation for details.
|
||
|
"""
|
||
|
pass
|
||
|
|
||
|
TapFunctionException = CallbackException # For backwards compatibility
|
||
|
|
||
|
class _CallbackHandlerData:
|
||
|
"""Keep track of the outfeed receiver data."""
|
||
|
receiver: Any
|
||
|
initialized: bool
|
||
|
on_exit: bool
|
||
|
lock: threading.Lock
|
||
|
last_callback_exception: Optional[Tuple[Exception, str]]
|
||
|
clients: Tuple[XlaLocalClient, ...]
|
||
|
devices: Tuple[XlaDevice, ...]
|
||
|
consumer_registry: Dict[Callable, int]
|
||
|
consumer_registry_by_id: Dict[int, Callable]
|
||
|
|
||
|
def __init__(self):
|
||
|
self.receiver = None # Initialize lazily, when first needed
|
||
|
self.initialized = False
|
||
|
self.on_exit = False
|
||
|
self.lock = threading.Lock()
|
||
|
self.last_callback_exception = None
|
||
|
self.clients = ()
|
||
|
self.devices = ()
|
||
|
# The consumer registries must be live for the lifetime of the program,
|
||
|
# because we may have cached compilations that embed consumer ids, and we
|
||
|
# do not want the id reused for other shapes.
|
||
|
# Used only for the outfeed mechanism.
|
||
|
self.callback_registry = dict()
|
||
|
self.callback_registry_by_id = dict()
|
||
|
# For now we keep here the keep_alives for the emit_python_callback. This is
|
||
|
# a leak. We ought to attach these to the executable.
|
||
|
self.keep_alives = []
|
||
|
|
||
|
def stop(self):
|
||
|
"""Wait for all pending outfeeds and stop the receiver."""
|
||
|
self.receiver = None # GC will trigger the destructor
|
||
|
self.initialized = False
|
||
|
self.clients = ()
|
||
|
self.devices = ()
|
||
|
# Do not clear the consumer registries.
|
||
|
|
||
|
|
||
|
_callback_handler_data = _CallbackHandlerData()
|
||
|
|
||
|
|
||
|
# This function is called from C++; it must not allow exceptions through.
|
||
|
def _callback_input_received(device, consumer_id, arrays: Tuple):
|
||
|
array_repr = ", ".join([f"({a.dtype}{a.shape})" for a in arrays])
|
||
|
logger.debug("Callback input received on device %s for consumer %s arrays: %s",
|
||
|
device, consumer_id, array_repr)
|
||
|
callback = _callback_handler_data.callback_registry_by_id.get(consumer_id)
|
||
|
assert callback is not None, "We should have crashed in the runtime"
|
||
|
try:
|
||
|
return callback(arrays, device)
|
||
|
except Exception as e:
|
||
|
formatted_e = traceback.format_exc()
|
||
|
logger.error("Postponing exception raised in callback function: %s", formatted_e)
|
||
|
_callback_handler_data.last_callback_exception = (e, formatted_e)
|
||
|
|
||
|
|
||
|
def _register_callback(callback: Callable) -> int:
|
||
|
"""Registers a callback function, cache by hash of callback.
|
||
|
|
||
|
The callback is a function to be invoked as `callback(arrays, device)`.
|
||
|
"""
|
||
|
callback_id = _callback_handler_data.callback_registry.get(callback)
|
||
|
if callback_id is not None:
|
||
|
return callback_id
|
||
|
callback_id = hash(callback) & 0xFFFFFFFC # pybind11 has trouble here with large ints
|
||
|
callback_id += 1 # Reserve the consumer ID 0
|
||
|
assert callback_id not in _callback_handler_data.callback_registry, (
|
||
|
"callback id collision")
|
||
|
_callback_handler_data.callback_registry[callback] = callback_id
|
||
|
_callback_handler_data.callback_registry_by_id[callback_id] = callback
|
||
|
return callback_id
|
||
|
|
||
|
|
||
|
def _initialize_outfeed_receiver(
|
||
|
max_callback_queue_size_bytes: int = int(256 * 1e6)):
|
||
|
"""Creates and starts the outfeed_receiver.
|
||
|
|
||
|
This function is called lazily only when we compile an id_tap.
|
||
|
|
||
|
Args:
|
||
|
* clients: the list of clients (backends) on whose devices to listen on.
|
||
|
* max_callback_queue_size_bytes: an optional integer to bound the maximum
|
||
|
size of arrays in the callback queue. When this limit is reached the
|
||
|
device listener pauses.
|
||
|
"""
|
||
|
outfeed_receiver_module = xla_extension.outfeed_receiver
|
||
|
|
||
|
with _callback_handler_data.lock:
|
||
|
if _callback_handler_data.initialized:
|
||
|
return
|
||
|
|
||
|
# By default, all devices on all supported backends.
|
||
|
clients = [backend for name, backend in xb.backends().items()
|
||
|
if name in ("cpu", "cuda", "rocm", "tpu")]
|
||
|
devices = list(
|
||
|
itertools.chain(*[backend.local_devices() for backend in clients]))
|
||
|
_callback_handler_data.clients = clients # type: ignore[assignment]
|
||
|
_callback_handler_data.devices = devices # type: ignore[assignment]
|
||
|
clients_with_outfeed = [c for c in clients if _use_outfeed(c.platform)]
|
||
|
for client in clients_with_outfeed:
|
||
|
_raise_if_using_outfeed_with_pjrt_c_api(client)
|
||
|
if clients_with_outfeed:
|
||
|
devices_with_outfeed = list(
|
||
|
itertools.chain(*[backend.local_devices() for backend in clients_with_outfeed]))
|
||
|
if logger.isEnabledFor(logging.DEBUG):
|
||
|
device_repr = ", ".join([str(d) for d in devices_with_outfeed])
|
||
|
logger.debug("Starting outfeed_receiver for %s. max_callback_queue_size_bytes=%s",
|
||
|
device_repr, max_callback_queue_size_bytes)
|
||
|
_callback_handler_data.receiver = outfeed_receiver_module.start(
|
||
|
_callback_input_received, tuple(clients_with_outfeed),
|
||
|
max_callback_queue_size_bytes,
|
||
|
xb.get_compile_options(1, 1).executable_build_options) # type:ignore
|
||
|
|
||
|
def exit_handler():
|
||
|
# Prevent logging usage during compilation, gives errors under pytest
|
||
|
dispatch._on_exit = True # type: ignore[protected-access]
|
||
|
if not _callback_handler_data.on_exit:
|
||
|
_callback_handler_data.on_exit = True
|
||
|
barrier_wait("at_exit")
|
||
|
|
||
|
atexit.register(exit_handler) # We wait as long as we have callbacks
|
||
|
_callback_handler_data.initialized = True
|
||
|
|
||
|
|
||
|
def barrier_wait(logging_name: Optional[str] = None):
|
||
|
"""Blocks the calling thread until all current outfeed is processed.
|
||
|
|
||
|
Waits until all callbacks from computations already running on all devices
|
||
|
have been received and processed by the Python callbacks. Raises
|
||
|
CallbackException if there were exceptions while processing the callbacks.
|
||
|
|
||
|
This works by enqueueing a special tap computation to all devices to which
|
||
|
we are listening for outfeed. Once all those tap computations are done, we
|
||
|
return from barrier_wait.
|
||
|
|
||
|
Note: If any of the devices are busy and cannot accept new computations,
|
||
|
this will deadlock.
|
||
|
|
||
|
Args:
|
||
|
logging_name: an optional string that will be used in the logging statements
|
||
|
for this invocation. See `Debugging` in the module documentation.
|
||
|
|
||
|
For more details see the :mod:`jax.experimental.host_callback` module documentation.
|
||
|
"""
|
||
|
logging_name = logging_name or ""
|
||
|
logger.debug("barrier_wait[%s]: start", logging_name)
|
||
|
|
||
|
lock = threading.Lock()
|
||
|
cv = threading.Condition(lock=lock)
|
||
|
devices_at_barrier = [] # Protected by lock
|
||
|
def barrier_tap_received(dev_idx, _):
|
||
|
device = _callback_handler_data.devices[dev_idx]
|
||
|
logger.debug(
|
||
|
"barrier_wait[%s]: at barrier_tap for device %s. Thread %s",
|
||
|
logging_name, device, threading.current_thread()
|
||
|
)
|
||
|
with lock:
|
||
|
devices_at_barrier.append(device)
|
||
|
if logger.isEnabledFor(logging.DEBUG):
|
||
|
waiting_for_devices = [d for d in _callback_handler_data.devices
|
||
|
if d not in devices_at_barrier]
|
||
|
logger.debug(
|
||
|
"barrier_wait[%s]: still waiting for %s devices at barrier (%s)",
|
||
|
logging_name, len(waiting_for_devices), waiting_for_devices
|
||
|
)
|
||
|
cv.notify()
|
||
|
|
||
|
for d_idx, d in enumerate(_callback_handler_data.devices):
|
||
|
logger.debug("barrier_wait[%s]: enqueueing barrier on device %s", logging_name, d)
|
||
|
x_on_dev = api.device_put(d_idx, device=d)
|
||
|
api.jit(lambda x: id_tap(barrier_tap_received, x), device=d)(x_on_dev)
|
||
|
|
||
|
logger.debug("barrier_wait[%s]: waiting for callbacks", logging_name)
|
||
|
|
||
|
with lock:
|
||
|
cv.wait_for(lambda: len(devices_at_barrier) == len(_callback_handler_data.devices))
|
||
|
|
||
|
logger.debug("barrier_wait[%s]: done", logging_name)
|
||
|
|
||
|
if _callback_handler_data.last_callback_exception is not None:
|
||
|
last_exception, formatted_last_exception = _callback_handler_data.last_callback_exception
|
||
|
_callback_handler_data.last_callback_exception = None
|
||
|
raise CallbackException(
|
||
|
"There were exceptions during callback processing. "
|
||
|
f"Last one was: {formatted_last_exception}") from last_exception
|
||
|
|
||
|
|
||
|
def stop_outfeed_receiver():
|
||
|
"""Stops the outfeed receiver runtime.
|
||
|
|
||
|
This waits for all outfeeds from computations already running on all devices,
|
||
|
and then stops the outfeed receiver runtime. The runtime will be restarted
|
||
|
next time you use a tap function.
|
||
|
|
||
|
It should not be necessary to use this function, unless you want to start
|
||
|
using lax.outfeed directly after having used host callbacks.
|
||
|
"""
|
||
|
_callback_handler_data.stop()
|