223 lines
9.1 KiB
Python
223 lines
9.1 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""Keras depthwise separable 1D convolution."""
|
||
|
|
||
|
|
||
|
import tensorflow.compat.v2 as tf
|
||
|
|
||
|
from keras import activations
|
||
|
from keras import constraints
|
||
|
from keras import initializers
|
||
|
from keras import regularizers
|
||
|
from keras.layers.convolutional.base_separable_conv import SeparableConv
|
||
|
from keras.utils import conv_utils
|
||
|
|
||
|
# isort: off
|
||
|
from tensorflow.python.util.tf_export import keras_export
|
||
|
|
||
|
|
||
|
@keras_export(
|
||
|
"keras.layers.SeparableConv1D", "keras.layers.SeparableConvolution1D"
|
||
|
)
|
||
|
class SeparableConv1D(SeparableConv):
|
||
|
"""Depthwise separable 1D convolution.
|
||
|
|
||
|
This layer performs a depthwise convolution that acts separately on
|
||
|
channels, followed by a pointwise convolution that mixes channels.
|
||
|
If `use_bias` is True and a bias initializer is provided,
|
||
|
it adds a bias vector to the output.
|
||
|
It then optionally applies an activation function to produce the final
|
||
|
output.
|
||
|
|
||
|
Args:
|
||
|
filters: Integer, the dimensionality of the output space (i.e. the number
|
||
|
of filters in the convolution).
|
||
|
kernel_size: A single integer specifying the spatial
|
||
|
dimensions of the filters.
|
||
|
strides: A single integer specifying the strides
|
||
|
of the convolution.
|
||
|
Specifying any `stride` value != 1 is incompatible with specifying
|
||
|
any `dilation_rate` value != 1.
|
||
|
padding: One of `"valid"`, `"same"`, or `"causal"` (case-insensitive).
|
||
|
`"valid"` means no padding. `"same"` results in padding with zeros
|
||
|
evenly to the left/right or up/down of the input such that output has
|
||
|
the same height/width dimension as the input. `"causal"` results in
|
||
|
causal (dilated) convolutions, e.g. `output[t]` does not depend on
|
||
|
`input[t+1:]`.
|
||
|
data_format: A string, one of `channels_last` (default) or
|
||
|
`channels_first`. The ordering of the dimensions in the inputs.
|
||
|
`channels_last` corresponds to inputs with shape
|
||
|
`(batch_size, length, channels)` while `channels_first` corresponds to
|
||
|
inputs with shape `(batch_size, channels, length)`.
|
||
|
dilation_rate: A single integer, specifying
|
||
|
the dilation rate to use for dilated convolution.
|
||
|
depth_multiplier: The number of depthwise convolution output channels for
|
||
|
each input channel. The total number of depthwise convolution output
|
||
|
channels will be equal to `num_filters_in * depth_multiplier`.
|
||
|
activation: Activation function to use.
|
||
|
If you don't specify anything, no activation is applied
|
||
|
(see `keras.activations`).
|
||
|
use_bias: Boolean, whether the layer uses a bias.
|
||
|
depthwise_initializer: An initializer for the depthwise convolution kernel
|
||
|
(see `keras.initializers`). If None, then the default initializer
|
||
|
('glorot_uniform') will be used.
|
||
|
pointwise_initializer: An initializer for the pointwise convolution kernel
|
||
|
(see `keras.initializers`). If None, then the default initializer
|
||
|
('glorot_uniform') will be used.
|
||
|
bias_initializer: An initializer for the bias vector. If None, the default
|
||
|
initializer ('zeros') will be used (see `keras.initializers`).
|
||
|
depthwise_regularizer: Optional regularizer for the depthwise
|
||
|
convolution kernel (see `keras.regularizers`).
|
||
|
pointwise_regularizer: Optional regularizer for the pointwise
|
||
|
convolution kernel (see `keras.regularizers`).
|
||
|
bias_regularizer: Optional regularizer for the bias vector
|
||
|
(see `keras.regularizers`).
|
||
|
activity_regularizer: Optional regularizer function for the output
|
||
|
(see `keras.regularizers`).
|
||
|
depthwise_constraint: Optional projection function to be applied to the
|
||
|
depthwise kernel after being updated by an `Optimizer` (e.g. used for
|
||
|
norm constraints or value constraints for layer weights). The function
|
||
|
must take as input the unprojected variable and must return the
|
||
|
projected variable (which must have the same shape). Constraints are
|
||
|
not safe to use when doing asynchronous distributed training
|
||
|
(see `keras.constraints`).
|
||
|
pointwise_constraint: Optional projection function to be applied to the
|
||
|
pointwise kernel after being updated by an `Optimizer`
|
||
|
(see `keras.constraints`).
|
||
|
bias_constraint: Optional projection function to be applied to the
|
||
|
bias after being updated by an `Optimizer`
|
||
|
(see `keras.constraints`).
|
||
|
trainable: Boolean, if `True` the weights of this layer will be marked as
|
||
|
trainable (and listed in `layer.trainable_weights`).
|
||
|
|
||
|
Input shape:
|
||
|
3D tensor with shape:
|
||
|
`(batch_size, channels, steps)` if data_format='channels_first'
|
||
|
or 3D tensor with shape:
|
||
|
`(batch_size, steps, channels)` if data_format='channels_last'.
|
||
|
|
||
|
Output shape:
|
||
|
3D tensor with shape:
|
||
|
`(batch_size, filters, new_steps)` if data_format='channels_first'
|
||
|
or 3D tensor with shape:
|
||
|
`(batch_size, new_steps, filters)` if data_format='channels_last'.
|
||
|
`new_steps` value might have changed due to padding or strides.
|
||
|
|
||
|
Returns:
|
||
|
A tensor of rank 3 representing
|
||
|
`activation(separableconv1d(inputs, kernel) + bias)`.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
filters,
|
||
|
kernel_size,
|
||
|
strides=1,
|
||
|
padding="valid",
|
||
|
data_format=None,
|
||
|
dilation_rate=1,
|
||
|
depth_multiplier=1,
|
||
|
activation=None,
|
||
|
use_bias=True,
|
||
|
depthwise_initializer="glorot_uniform",
|
||
|
pointwise_initializer="glorot_uniform",
|
||
|
bias_initializer="zeros",
|
||
|
depthwise_regularizer=None,
|
||
|
pointwise_regularizer=None,
|
||
|
bias_regularizer=None,
|
||
|
activity_regularizer=None,
|
||
|
depthwise_constraint=None,
|
||
|
pointwise_constraint=None,
|
||
|
bias_constraint=None,
|
||
|
**kwargs
|
||
|
):
|
||
|
super().__init__(
|
||
|
rank=1,
|
||
|
filters=filters,
|
||
|
kernel_size=kernel_size,
|
||
|
strides=strides,
|
||
|
padding=padding,
|
||
|
data_format=data_format,
|
||
|
dilation_rate=dilation_rate,
|
||
|
depth_multiplier=depth_multiplier,
|
||
|
activation=activations.get(activation),
|
||
|
use_bias=use_bias,
|
||
|
depthwise_initializer=initializers.get(depthwise_initializer),
|
||
|
pointwise_initializer=initializers.get(pointwise_initializer),
|
||
|
bias_initializer=initializers.get(bias_initializer),
|
||
|
depthwise_regularizer=regularizers.get(depthwise_regularizer),
|
||
|
pointwise_regularizer=regularizers.get(pointwise_regularizer),
|
||
|
bias_regularizer=regularizers.get(bias_regularizer),
|
||
|
activity_regularizer=regularizers.get(activity_regularizer),
|
||
|
depthwise_constraint=constraints.get(depthwise_constraint),
|
||
|
pointwise_constraint=constraints.get(pointwise_constraint),
|
||
|
bias_constraint=constraints.get(bias_constraint),
|
||
|
**kwargs
|
||
|
)
|
||
|
|
||
|
def call(self, inputs):
|
||
|
if self.padding == "causal":
|
||
|
inputs = tf.pad(inputs, self._compute_causal_padding(inputs))
|
||
|
if self.data_format == "channels_last":
|
||
|
strides = (1,) + self.strides * 2 + (1,)
|
||
|
spatial_start_dim = 1
|
||
|
else:
|
||
|
strides = (1, 1) + self.strides * 2
|
||
|
spatial_start_dim = 2
|
||
|
|
||
|
# Explicitly broadcast inputs and kernels to 4D.
|
||
|
# TODO(fchollet): refactor when a native separable_conv1d op is
|
||
|
# available.
|
||
|
inputs = tf.expand_dims(inputs, spatial_start_dim)
|
||
|
depthwise_kernel = tf.expand_dims(self.depthwise_kernel, 0)
|
||
|
pointwise_kernel = tf.expand_dims(self.pointwise_kernel, 0)
|
||
|
dilation_rate = (1,) + self.dilation_rate
|
||
|
|
||
|
if self.padding == "causal":
|
||
|
op_padding = "valid"
|
||
|
else:
|
||
|
op_padding = self.padding
|
||
|
outputs = tf.compat.v1.nn.separable_conv2d(
|
||
|
inputs,
|
||
|
depthwise_kernel,
|
||
|
pointwise_kernel,
|
||
|
strides=strides,
|
||
|
padding=op_padding.upper(),
|
||
|
rate=dilation_rate,
|
||
|
data_format=conv_utils.convert_data_format(
|
||
|
self.data_format, ndim=4
|
||
|
),
|
||
|
)
|
||
|
|
||
|
if self.use_bias:
|
||
|
outputs = tf.nn.bias_add(
|
||
|
outputs,
|
||
|
self.bias,
|
||
|
data_format=conv_utils.convert_data_format(
|
||
|
self.data_format, ndim=4
|
||
|
),
|
||
|
)
|
||
|
|
||
|
outputs = tf.squeeze(outputs, [spatial_start_dim])
|
||
|
|
||
|
if self.activation is not None:
|
||
|
return self.activation(outputs)
|
||
|
return outputs
|
||
|
|
||
|
|
||
|
# Alias
|
||
|
|
||
|
SeparableConvolution1D = SeparableConv1D
|