Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/layers/rnn/cudnn_gru.py

225 lines
8.4 KiB
Python
Raw Normal View History

2023-06-19 00:49:18 +02:00
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Fast GRU layer backed by cuDNN."""
import collections
import tensorflow.compat.v2 as tf
from keras import constraints
from keras import initializers
from keras import regularizers
from keras.layers.rnn import gru_lstm_utils
from keras.layers.rnn.base_cudnn_rnn import _CuDNNRNN
# isort: off
from tensorflow.python.util.tf_export import keras_export
@keras_export(v1=["keras.layers.CuDNNGRU"])
class CuDNNGRU(_CuDNNRNN):
"""Fast GRU implementation backed by cuDNN.
More information about cuDNN can be found on the [NVIDIA
developer website](https://developer.nvidia.com/cudnn).
Can only be run on GPU.
Args:
units: Positive integer, dimensionality of the output space.
kernel_initializer: Initializer for the `kernel` weights matrix, used
for the linear transformation of the inputs.
recurrent_initializer: Initializer for the `recurrent_kernel` weights
matrix, used for the linear transformation of the recurrent state.
bias_initializer: Initializer for the bias vector.
kernel_regularizer: Regularizer function applied to the `kernel` weights
matrix.
recurrent_regularizer: Regularizer function applied to the
`recurrent_kernel` weights matrix.
bias_regularizer: Regularizer function applied to the bias vector.
activity_regularizer: Regularizer function applied to the output of the
layer (its "activation").
kernel_constraint: Constraint function applied to the `kernel` weights
matrix.
recurrent_constraint: Constraint function applied to the
`recurrent_kernel` weights matrix.
bias_constraint: Constraint function applied to the bias vector.
return_sequences: Boolean. Whether to return the last output in the
output sequence, or the full sequence.
return_state: Boolean. Whether to return the last state in addition to
the output.
go_backwards: Boolean (default False). If True, process the input
sequence backwards and return the reversed sequence.
stateful: Boolean (default False). If True, the last state for each
sample at index i in a batch will be used as initial state for the
sample of index i in the following batch.
"""
def __init__(
self,
units,
kernel_initializer="glorot_uniform",
recurrent_initializer="orthogonal",
bias_initializer="zeros",
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
return_sequences=False,
return_state=False,
go_backwards=False,
stateful=False,
**kwargs
):
self.units = units
cell_spec = collections.namedtuple("cell", "state_size")
self._cell = cell_spec(state_size=self.units)
super().__init__(
return_sequences=return_sequences,
return_state=return_state,
go_backwards=go_backwards,
stateful=stateful,
**kwargs
)
self.kernel_initializer = initializers.get(kernel_initializer)
self.recurrent_initializer = initializers.get(recurrent_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.recurrent_regularizer = regularizers.get(recurrent_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.recurrent_constraint = constraints.get(recurrent_constraint)
self.bias_constraint = constraints.get(bias_constraint)
@property
def cell(self):
return self._cell
def build(self, input_shape):
super().build(input_shape)
if isinstance(input_shape, list):
input_shape = input_shape[0]
input_dim = int(input_shape[-1])
self.kernel = self.add_weight(
shape=(input_dim, self.units * 3),
name="kernel",
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint,
)
self.recurrent_kernel = self.add_weight(
shape=(self.units, self.units * 3),
name="recurrent_kernel",
initializer=self.recurrent_initializer,
regularizer=self.recurrent_regularizer,
constraint=self.recurrent_constraint,
)
self.bias = self.add_weight(
shape=(self.units * 6,),
name="bias",
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
constraint=self.bias_constraint,
)
self.built = True
def _process_batch(self, inputs, initial_state):
if not self.time_major:
inputs = tf.transpose(inputs, perm=(1, 0, 2))
input_h = initial_state[0]
input_h = tf.expand_dims(input_h, axis=0)
params = gru_lstm_utils.canonical_to_params(
weights=[
self.kernel[:, self.units : self.units * 2],
self.kernel[:, : self.units],
self.kernel[:, self.units * 2 :],
self.recurrent_kernel[:, self.units : self.units * 2],
self.recurrent_kernel[:, : self.units],
self.recurrent_kernel[:, self.units * 2 :],
],
biases=[
self.bias[self.units : self.units * 2],
self.bias[: self.units],
self.bias[self.units * 2 : self.units * 3],
self.bias[self.units * 4 : self.units * 5],
self.bias[self.units * 3 : self.units * 4],
self.bias[self.units * 5 :],
],
shape=self._vector_shape,
)
args = {
"input": inputs,
"input_h": input_h,
"input_c": 0,
"params": params,
"is_training": True,
"rnn_mode": "gru",
}
outputs, h, _, _, _ = tf.raw_ops.CudnnRNNV2(**args)
if self.stateful or self.return_state:
h = h[0]
if self.return_sequences:
if self.time_major:
output = outputs
else:
output = tf.transpose(outputs, perm=(1, 0, 2))
else:
output = outputs[-1]
return output, [h]
def get_config(self):
config = {
"units": self.units,
"kernel_initializer": initializers.serialize(
self.kernel_initializer
),
"recurrent_initializer": initializers.serialize(
self.recurrent_initializer
),
"bias_initializer": initializers.serialize(self.bias_initializer),
"kernel_regularizer": regularizers.serialize(
self.kernel_regularizer
),
"recurrent_regularizer": regularizers.serialize(
self.recurrent_regularizer
),
"bias_regularizer": regularizers.serialize(self.bias_regularizer),
"activity_regularizer": regularizers.serialize(
self.activity_regularizer
),
"kernel_constraint": constraints.serialize(self.kernel_constraint),
"recurrent_constraint": constraints.serialize(
self.recurrent_constraint
),
"bias_constraint": constraints.serialize(self.bias_constraint),
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))