353 lines
15 KiB
Python
353 lines
15 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""Wrapper layer to apply every temporal slice of an input."""
|
||
|
|
||
|
|
||
|
import tensorflow.compat.v2 as tf
|
||
|
|
||
|
from keras import backend
|
||
|
from keras.engine.base_layer import Layer
|
||
|
from keras.engine.input_spec import InputSpec
|
||
|
from keras.layers.rnn.base_wrapper import Wrapper
|
||
|
from keras.utils import generic_utils
|
||
|
from keras.utils import layer_utils
|
||
|
from keras.utils import tf_utils
|
||
|
|
||
|
# isort: off
|
||
|
from tensorflow.python.util.tf_export import keras_export
|
||
|
|
||
|
|
||
|
@keras_export("keras.layers.TimeDistributed")
|
||
|
class TimeDistributed(Wrapper):
|
||
|
"""This wrapper allows to apply a layer to every temporal slice of an input.
|
||
|
|
||
|
Every input should be at least 3D, and the dimension of index one of the
|
||
|
first input will be considered to be the temporal dimension.
|
||
|
|
||
|
Consider a batch of 32 video samples, where each sample is a 128x128 RGB
|
||
|
image with `channels_last` data format, across 10 timesteps.
|
||
|
The batch input shape is `(32, 10, 128, 128, 3)`.
|
||
|
|
||
|
You can then use `TimeDistributed` to apply the same `Conv2D` layer to each
|
||
|
of the 10 timesteps, independently:
|
||
|
|
||
|
>>> inputs = tf.keras.Input(shape=(10, 128, 128, 3))
|
||
|
>>> conv_2d_layer = tf.keras.layers.Conv2D(64, (3, 3))
|
||
|
>>> outputs = tf.keras.layers.TimeDistributed(conv_2d_layer)(inputs)
|
||
|
>>> outputs.shape
|
||
|
TensorShape([None, 10, 126, 126, 64])
|
||
|
|
||
|
Because `TimeDistributed` applies the same instance of `Conv2D` to each of
|
||
|
the timestamps, the same set of weights are used at each timestamp.
|
||
|
|
||
|
Args:
|
||
|
layer: a `tf.keras.layers.Layer` instance.
|
||
|
|
||
|
Call arguments:
|
||
|
inputs: Input tensor of shape (batch, time, ...) or nested tensors,
|
||
|
and each of which has shape (batch, time, ...).
|
||
|
training: Python boolean indicating whether the layer should behave in
|
||
|
training mode or in inference mode. This argument is passed to the
|
||
|
wrapped layer (only if the layer supports this argument).
|
||
|
mask: Binary tensor of shape `(samples, timesteps)` indicating whether
|
||
|
a given timestep should be masked. This argument is passed to the
|
||
|
wrapped layer (only if the layer supports this argument).
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If not initialized with a `tf.keras.layers.Layer` instance.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, layer, **kwargs):
|
||
|
if not isinstance(layer, Layer):
|
||
|
raise ValueError(
|
||
|
"Please initialize `TimeDistributed` layer with a "
|
||
|
f"`tf.keras.layers.Layer` instance. Received: {layer}"
|
||
|
)
|
||
|
super().__init__(layer, **kwargs)
|
||
|
self.supports_masking = True
|
||
|
|
||
|
# It is safe to use the fast, reshape-based approach with all of our
|
||
|
# built-in Layers.
|
||
|
self._always_use_reshape = layer_utils.is_builtin_layer(
|
||
|
layer
|
||
|
) and not getattr(layer, "stateful", False)
|
||
|
|
||
|
def _get_shape_tuple(self, init_tuple, tensor, start_idx):
|
||
|
"""Finds non-specific dimensions in the static shapes.
|
||
|
|
||
|
The static shapes are replaced with the corresponding dynamic shapes of
|
||
|
the tensor.
|
||
|
Args:
|
||
|
init_tuple: a tuple, the first part of the output shape
|
||
|
tensor: the tensor from which to get the (static and dynamic) shapes
|
||
|
as the last part of the output shape
|
||
|
start_idx: int, which indicate the first dimension to take from
|
||
|
the static shape of the tensor
|
||
|
Returns:
|
||
|
The new shape with the first part from `init_tuple` and the last part
|
||
|
from or `tensor.shape`, where every `None` is replaced by the
|
||
|
corresponding dimension from `tf.shape(tensor)`.
|
||
|
"""
|
||
|
# replace all None in int_shape by backend.shape
|
||
|
int_shape = backend.int_shape(tensor)[start_idx:]
|
||
|
if not any(s is None for s in int_shape):
|
||
|
return init_tuple + int_shape
|
||
|
shape = backend.shape(tensor)
|
||
|
int_shape = list(int_shape)
|
||
|
for i, s in enumerate(int_shape):
|
||
|
if s is None:
|
||
|
int_shape[i] = shape[start_idx + i]
|
||
|
return init_tuple + tuple(int_shape)
|
||
|
|
||
|
def _remove_timesteps(self, dims):
|
||
|
dims = dims.as_list()
|
||
|
return tf.TensorShape([dims[0]] + dims[2:])
|
||
|
|
||
|
def build(self, input_shape):
|
||
|
input_shape = tf_utils.convert_shapes(input_shape, to_tuples=False)
|
||
|
input_dims = tf.nest.flatten(
|
||
|
tf.nest.map_structure(lambda x: x.ndims, input_shape)
|
||
|
)
|
||
|
if any(dim < 3 for dim in input_dims):
|
||
|
raise ValueError(
|
||
|
"`TimeDistributed` Layer should be passed an `input_shape ` "
|
||
|
f"with at least 3 dimensions, received: {input_shape}"
|
||
|
)
|
||
|
# Don't enforce the batch or time dimension.
|
||
|
self.input_spec = tf.nest.map_structure(
|
||
|
lambda x: InputSpec(shape=[None, None] + x.as_list()[2:]),
|
||
|
input_shape,
|
||
|
)
|
||
|
child_input_shape = tf.nest.map_structure(
|
||
|
self._remove_timesteps, input_shape
|
||
|
)
|
||
|
child_input_shape = tf_utils.convert_shapes(child_input_shape)
|
||
|
super().build(tuple(child_input_shape))
|
||
|
self.built = True
|
||
|
|
||
|
def compute_output_shape(self, input_shape):
|
||
|
input_shape = tf_utils.convert_shapes(input_shape, to_tuples=False)
|
||
|
|
||
|
child_input_shape = tf.nest.map_structure(
|
||
|
self._remove_timesteps, input_shape
|
||
|
)
|
||
|
child_output_shape = self.layer.compute_output_shape(child_input_shape)
|
||
|
child_output_shape = tf_utils.convert_shapes(
|
||
|
child_output_shape, to_tuples=False
|
||
|
)
|
||
|
timesteps = tf_utils.convert_shapes(input_shape)
|
||
|
timesteps = tf.nest.flatten(timesteps)[1]
|
||
|
|
||
|
def insert_timesteps(dims):
|
||
|
dims = dims.as_list()
|
||
|
return tf.TensorShape([dims[0], timesteps] + dims[1:])
|
||
|
|
||
|
return tf.nest.map_structure(insert_timesteps, child_output_shape)
|
||
|
|
||
|
def call(self, inputs, training=None, mask=None):
|
||
|
kwargs = {}
|
||
|
if generic_utils.has_arg(self.layer.call, "training"):
|
||
|
kwargs["training"] = training
|
||
|
|
||
|
input_shape = tf.nest.map_structure(
|
||
|
lambda x: tf.TensorShape(backend.int_shape(x)), inputs
|
||
|
)
|
||
|
batch_size = tf_utils.convert_shapes(input_shape)
|
||
|
batch_size = tf.nest.flatten(batch_size)[0]
|
||
|
if batch_size and not self._always_use_reshape:
|
||
|
inputs, row_lengths = backend.convert_inputs_if_ragged(inputs)
|
||
|
is_ragged_input = row_lengths is not None
|
||
|
input_length = tf_utils.convert_shapes(input_shape)
|
||
|
input_length = tf.nest.flatten(input_length)[1]
|
||
|
|
||
|
# batch size matters, use rnn-based implementation
|
||
|
def step(x, _):
|
||
|
output = self.layer(x, **kwargs)
|
||
|
return output, []
|
||
|
|
||
|
_, outputs, _ = backend.rnn(
|
||
|
step,
|
||
|
inputs,
|
||
|
initial_states=[],
|
||
|
input_length=row_lengths[0]
|
||
|
if is_ragged_input
|
||
|
else input_length,
|
||
|
mask=mask,
|
||
|
unroll=False,
|
||
|
)
|
||
|
|
||
|
y = tf.nest.map_structure(
|
||
|
lambda output: backend.maybe_convert_to_ragged(
|
||
|
is_ragged_input, output, row_lengths
|
||
|
),
|
||
|
outputs,
|
||
|
)
|
||
|
else:
|
||
|
# No batch size specified, therefore the layer will be able
|
||
|
# to process batches of any size.
|
||
|
# We can go with reshape-based implementation for performance.
|
||
|
is_ragged_input = tf.nest.map_structure(
|
||
|
lambda x: isinstance(x, tf.RaggedTensor), inputs
|
||
|
)
|
||
|
is_ragged_input = tf.nest.flatten(is_ragged_input)
|
||
|
if all(is_ragged_input):
|
||
|
input_values = tf.nest.map_structure(lambda x: x.values, inputs)
|
||
|
input_row_lenghts = tf.nest.map_structure(
|
||
|
lambda x: x.nested_row_lengths()[0], inputs
|
||
|
)
|
||
|
y = self.layer(input_values, **kwargs)
|
||
|
y = tf.nest.map_structure(
|
||
|
tf.RaggedTensor.from_row_lengths, y, input_row_lenghts
|
||
|
)
|
||
|
elif any(is_ragged_input):
|
||
|
raise ValueError(
|
||
|
"All inputs has to be either ragged or not, "
|
||
|
f"but not mixed. Received: {inputs}"
|
||
|
)
|
||
|
else:
|
||
|
input_length = tf_utils.convert_shapes(input_shape)
|
||
|
input_length = tf.nest.flatten(input_length)[1]
|
||
|
if not input_length:
|
||
|
input_length = tf.nest.map_structure(
|
||
|
lambda x: tf.shape(x)[1], inputs
|
||
|
)
|
||
|
input_length = generic_utils.to_list(
|
||
|
tf.nest.flatten(input_length)
|
||
|
)[0]
|
||
|
|
||
|
inner_input_shape = tf.nest.map_structure(
|
||
|
lambda x: self._get_shape_tuple((-1,), x, 2), inputs
|
||
|
)
|
||
|
# Shape: (num_samples * timesteps, ...). And track the
|
||
|
# transformation in self._input_map.
|
||
|
inputs = tf.__internal__.nest.map_structure_up_to(
|
||
|
inputs, tf.reshape, inputs, inner_input_shape
|
||
|
)
|
||
|
# (num_samples * timesteps, ...)
|
||
|
if (
|
||
|
generic_utils.has_arg(self.layer.call, "mask")
|
||
|
and mask is not None
|
||
|
):
|
||
|
inner_mask_shape = self._get_shape_tuple((-1,), mask, 2)
|
||
|
kwargs["mask"] = backend.reshape(mask, inner_mask_shape)
|
||
|
|
||
|
y = self.layer(inputs, **kwargs)
|
||
|
|
||
|
# Reconstruct the output shape by re-splitting the 0th dimension
|
||
|
# back into (num_samples, timesteps, ...)
|
||
|
# We use batch_size when available so that the 0th dimension is
|
||
|
# set in the static shape of the reshaped output
|
||
|
reshape_batch_size = batch_size if batch_size else -1
|
||
|
output_shape = tf.nest.map_structure(
|
||
|
lambda tensor: self._get_shape_tuple(
|
||
|
(reshape_batch_size, input_length), tensor, 1
|
||
|
),
|
||
|
y,
|
||
|
)
|
||
|
y = tf.__internal__.nest.map_structure_up_to(
|
||
|
y, tf.reshape, y, output_shape
|
||
|
)
|
||
|
|
||
|
return y
|
||
|
|
||
|
def compute_mask(self, inputs, mask=None):
|
||
|
"""Computes an output mask tensor for Embedding layer.
|
||
|
|
||
|
This is based on the inputs, mask, and the inner layer.
|
||
|
If batch size is specified:
|
||
|
Simply return the input `mask`. (An rnn-based implementation with
|
||
|
more than one rnn inputs is required but not supported in tf.keras yet.)
|
||
|
Otherwise we call `compute_mask` of the inner layer at each time step.
|
||
|
If the output mask at each time step is not `None`:
|
||
|
(E.g., inner layer is Masking or RNN)
|
||
|
Concatenate all of them and return the concatenation.
|
||
|
If the output mask at each time step is `None` and the input mask is not
|
||
|
`None`:(E.g., inner layer is Dense)
|
||
|
Reduce the input_mask to 2 dimensions and return it.
|
||
|
Otherwise (both the output mask and the input mask are `None`):
|
||
|
(E.g., `mask` is not used at all)
|
||
|
Return `None`.
|
||
|
|
||
|
Args:
|
||
|
inputs: Tensor with shape [batch size, timesteps, ...] indicating the
|
||
|
input to TimeDistributed. If static shape information is available
|
||
|
for "batch size", `mask` is returned unmodified.
|
||
|
mask: Either None (indicating no masking) or a Tensor indicating the
|
||
|
input mask for TimeDistributed. The shape can be static or dynamic.
|
||
|
|
||
|
Returns:
|
||
|
Either None (no masking), or a [batch size, timesteps, ...] Tensor
|
||
|
with an output mask for the TimeDistributed layer with the shape
|
||
|
beyond the second dimension being the value of the input mask shape(if
|
||
|
the computed output mask is none), an output mask with the shape
|
||
|
beyond the first dimension being the value of the mask shape(if mask
|
||
|
is not None) or output mask with the shape beyond the first dimension
|
||
|
being the value of the computed output shape.
|
||
|
|
||
|
"""
|
||
|
# cases need to call the layer.compute_mask when input_mask is None:
|
||
|
# Masking layer and Embedding layer with mask_zero
|
||
|
input_shape = tf.nest.map_structure(
|
||
|
lambda x: tf.TensorShape(backend.int_shape(x)), inputs
|
||
|
)
|
||
|
input_shape = tf_utils.convert_shapes(input_shape, to_tuples=False)
|
||
|
batch_size = tf_utils.convert_shapes(input_shape)
|
||
|
batch_size = tf.nest.flatten(batch_size)[0]
|
||
|
is_ragged_input = tf.nest.map_structure(
|
||
|
lambda x: isinstance(x, tf.RaggedTensor), inputs
|
||
|
)
|
||
|
is_ragged_input = generic_utils.to_list(
|
||
|
tf.nest.flatten(is_ragged_input)
|
||
|
)
|
||
|
if batch_size and not self._always_use_reshape or any(is_ragged_input):
|
||
|
# batch size matters, we currently do not handle mask explicitly, or
|
||
|
# if the layer always uses reshape approach, or the input is a
|
||
|
# ragged tensor.
|
||
|
return mask
|
||
|
inner_mask = mask
|
||
|
if inner_mask is not None:
|
||
|
inner_mask_shape = self._get_shape_tuple((-1,), mask, 2)
|
||
|
inner_mask = backend.reshape(inner_mask, inner_mask_shape)
|
||
|
inner_input_shape = tf.nest.map_structure(
|
||
|
lambda tensor: self._get_shape_tuple((-1,), tensor, 2), inputs
|
||
|
)
|
||
|
inner_inputs = tf.__internal__.nest.map_structure_up_to(
|
||
|
inputs, tf.reshape, inputs, inner_input_shape
|
||
|
)
|
||
|
output_mask = self.layer.compute_mask(inner_inputs, inner_mask)
|
||
|
if output_mask is None:
|
||
|
if mask is None:
|
||
|
return None
|
||
|
# input_mask is not None, and output_mask is None:
|
||
|
# we should return a not-None mask
|
||
|
output_mask = mask
|
||
|
for _ in range(2, len(backend.int_shape(mask))):
|
||
|
output_mask = backend.any(output_mask, axis=-1)
|
||
|
else:
|
||
|
# output_mask is not None. We need to reshape it
|
||
|
input_length = tf_utils.convert_shapes(input_shape)
|
||
|
input_length = tf.nest.flatten(input_length)[1]
|
||
|
if not input_length:
|
||
|
input_length = tf.nest.map_structure(
|
||
|
lambda x: backend.shape(x)[1], inputs
|
||
|
)
|
||
|
input_length = tf.nest.flatten(input_length)[0]
|
||
|
reshape_batch_size = batch_size if batch_size else -1
|
||
|
output_mask_shape = self._get_shape_tuple(
|
||
|
(reshape_batch_size, input_length), output_mask, 1
|
||
|
)
|
||
|
output_mask = backend.reshape(output_mask, output_mask_shape)
|
||
|
return output_mask
|