Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/layers/serialization.py

289 lines
9.3 KiB
Python
Raw Normal View History

2023-06-19 00:49:18 +02:00
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Layer serialization/deserialization functions."""
import threading
import tensorflow.compat.v2 as tf
from keras.engine import base_layer
from keras.engine import input_layer
from keras.engine import input_spec
from keras.layers import activation
from keras.layers import attention
from keras.layers import convolutional
from keras.layers import core
from keras.layers import locally_connected
from keras.layers import merging
from keras.layers import pooling
from keras.layers import regularization
from keras.layers import reshaping
from keras.layers import rnn
from keras.layers.normalization import batch_normalization
from keras.layers.normalization import batch_normalization_v1
from keras.layers.normalization import group_normalization
from keras.layers.normalization import layer_normalization
from keras.layers.normalization import unit_normalization
from keras.layers.preprocessing import category_encoding
from keras.layers.preprocessing import discretization
from keras.layers.preprocessing import hashed_crossing
from keras.layers.preprocessing import hashing
from keras.layers.preprocessing import image_preprocessing
from keras.layers.preprocessing import integer_lookup
from keras.layers.preprocessing import (
normalization as preprocessing_normalization,
)
from keras.layers.preprocessing import string_lookup
from keras.layers.preprocessing import text_vectorization
from keras.layers.rnn import cell_wrappers
from keras.layers.rnn import gru
from keras.layers.rnn import lstm
from keras.saving.legacy import serialization as legacy_serialization
from keras.saving.legacy.saved_model import json_utils
from keras.utils import generic_utils
from keras.utils import tf_inspect as inspect
# isort: off
from tensorflow.python.util.tf_export import keras_export
ALL_MODULES = (
base_layer,
input_layer,
activation,
attention,
convolutional,
core,
locally_connected,
merging,
batch_normalization_v1,
group_normalization,
layer_normalization,
unit_normalization,
pooling,
image_preprocessing,
regularization,
reshaping,
rnn,
hashing,
hashed_crossing,
category_encoding,
discretization,
integer_lookup,
preprocessing_normalization,
string_lookup,
text_vectorization,
)
ALL_V2_MODULES = (
batch_normalization,
layer_normalization,
cell_wrappers,
gru,
lstm,
)
# ALL_OBJECTS is meant to be a global mutable. Hence we need to make it
# thread-local to avoid concurrent mutations.
LOCAL = threading.local()
def populate_deserializable_objects():
"""Populates dict ALL_OBJECTS with every built-in layer."""
global LOCAL
if not hasattr(LOCAL, "ALL_OBJECTS"):
LOCAL.ALL_OBJECTS = {}
LOCAL.GENERATED_WITH_V2 = None
if (
LOCAL.ALL_OBJECTS
and LOCAL.GENERATED_WITH_V2 == tf.__internal__.tf2.enabled()
):
# Objects dict is already generated for the proper TF version:
# do nothing.
return
LOCAL.ALL_OBJECTS = {}
LOCAL.GENERATED_WITH_V2 = tf.__internal__.tf2.enabled()
base_cls = base_layer.Layer
generic_utils.populate_dict_with_module_objects(
LOCAL.ALL_OBJECTS,
ALL_MODULES,
obj_filter=lambda x: inspect.isclass(x) and issubclass(x, base_cls),
)
# Overwrite certain V1 objects with V2 versions
if tf.__internal__.tf2.enabled():
generic_utils.populate_dict_with_module_objects(
LOCAL.ALL_OBJECTS,
ALL_V2_MODULES,
obj_filter=lambda x: inspect.isclass(x) and issubclass(x, base_cls),
)
# These deserialization aliases are added for backward compatibility,
# as in TF 1.13, "BatchNormalizationV1" and "BatchNormalizationV2"
# were used as class name for v1 and v2 version of BatchNormalization,
# respectively. Here we explicitly convert them to their canonical names.
LOCAL.ALL_OBJECTS[
"BatchNormalizationV1"
] = batch_normalization_v1.BatchNormalization
LOCAL.ALL_OBJECTS[
"BatchNormalizationV2"
] = batch_normalization.BatchNormalization
# Prevent circular dependencies.
from keras import models
from keras.feature_column.sequence_feature_column import (
SequenceFeatures,
)
from keras.premade_models.linear import (
LinearModel,
)
from keras.premade_models.wide_deep import (
WideDeepModel,
)
LOCAL.ALL_OBJECTS["Input"] = input_layer.Input
LOCAL.ALL_OBJECTS["InputSpec"] = input_spec.InputSpec
LOCAL.ALL_OBJECTS["Functional"] = models.Functional
LOCAL.ALL_OBJECTS["Model"] = models.Model
LOCAL.ALL_OBJECTS["SequenceFeatures"] = SequenceFeatures
LOCAL.ALL_OBJECTS["Sequential"] = models.Sequential
LOCAL.ALL_OBJECTS["LinearModel"] = LinearModel
LOCAL.ALL_OBJECTS["WideDeepModel"] = WideDeepModel
if tf.__internal__.tf2.enabled():
from keras.feature_column.dense_features_v2 import (
DenseFeatures,
)
LOCAL.ALL_OBJECTS["DenseFeatures"] = DenseFeatures
else:
from keras.feature_column.dense_features import (
DenseFeatures,
)
LOCAL.ALL_OBJECTS["DenseFeatures"] = DenseFeatures
# Merging layers, function versions.
LOCAL.ALL_OBJECTS["add"] = merging.add
LOCAL.ALL_OBJECTS["subtract"] = merging.subtract
LOCAL.ALL_OBJECTS["multiply"] = merging.multiply
LOCAL.ALL_OBJECTS["average"] = merging.average
LOCAL.ALL_OBJECTS["maximum"] = merging.maximum
LOCAL.ALL_OBJECTS["minimum"] = merging.minimum
LOCAL.ALL_OBJECTS["concatenate"] = merging.concatenate
LOCAL.ALL_OBJECTS["dot"] = merging.dot
@keras_export("keras.layers.serialize")
def serialize(layer, use_legacy_format=False):
"""Serializes a `Layer` object into a JSON-compatible representation.
Args:
layer: The `Layer` object to serialize.
Returns:
A JSON-serializable dict representing the object's config.
Example:
```python
from pprint import pprint
model = tf.keras.models.Sequential()
model.add(tf.keras.Input(shape=(16,)))
model.add(tf.keras.layers.Dense(32, activation='relu'))
pprint(tf.keras.layers.serialize(model))
# prints the configuration of the model, as a dict.
"""
if use_legacy_format:
return legacy_serialization.serialize_keras_object(layer)
# To be replaced by new serialization_lib
return legacy_serialization.serialize_keras_object(layer)
@keras_export("keras.layers.deserialize")
def deserialize(config, custom_objects=None, use_legacy_format=False):
"""Instantiates a layer from a config dictionary.
Args:
config: dict of the form {'class_name': str, 'config': dict}
custom_objects: dict mapping class names (or function names) of custom
(non-Keras) objects to class/functions
Returns:
Layer instance (may be Model, Sequential, Network, Layer...)
Example:
```python
# Configuration of Dense(32, activation='relu')
config = {
'class_name': 'Dense',
'config': {
'activation': 'relu',
'activity_regularizer': None,
'bias_constraint': None,
'bias_initializer': {'class_name': 'Zeros', 'config': {}},
'bias_regularizer': None,
'dtype': 'float32',
'kernel_constraint': None,
'kernel_initializer': {'class_name': 'GlorotUniform',
'config': {'seed': None}},
'kernel_regularizer': None,
'name': 'dense',
'trainable': True,
'units': 32,
'use_bias': True
}
}
dense_layer = tf.keras.layers.deserialize(config)
```
"""
populate_deserializable_objects()
if use_legacy_format:
return legacy_serialization.deserialize_keras_object(
config,
module_objects=LOCAL.ALL_OBJECTS,
custom_objects=custom_objects,
printable_module_name="layer",
)
# To be replaced by new serialization_lib
return legacy_serialization.deserialize_keras_object(
config,
module_objects=LOCAL.ALL_OBJECTS,
custom_objects=custom_objects,
printable_module_name="layer",
)
def get_builtin_layer(class_name):
"""Returns class if `class_name` is registered, else returns None."""
if not hasattr(LOCAL, "ALL_OBJECTS"):
populate_deserializable_objects()
return LOCAL.ALL_OBJECTS.get(class_name)
def deserialize_from_json(json_string, custom_objects=None):
"""Instantiates a layer from a JSON string."""
populate_deserializable_objects()
config = json_utils.decode_and_deserialize(
json_string,
module_objects=LOCAL.ALL_OBJECTS,
custom_objects=custom_objects,
)
return deserialize(config, custom_objects)