148 lines
5.1 KiB
Python
148 lines
5.1 KiB
Python
|
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""Adagrad optimizer implementation."""
|
||
|
|
||
|
import tensorflow.compat.v2 as tf
|
||
|
|
||
|
from keras import initializers
|
||
|
from keras.optimizers import optimizer
|
||
|
from keras.saving.object_registration import register_keras_serializable
|
||
|
|
||
|
# isort: off
|
||
|
from tensorflow.python.util.tf_export import keras_export
|
||
|
|
||
|
|
||
|
@register_keras_serializable()
|
||
|
@keras_export(
|
||
|
"keras.optimizers.experimental.Adagrad", "keras.optimizers.Adagrad", v1=[]
|
||
|
)
|
||
|
class Adagrad(optimizer.Optimizer):
|
||
|
r"""Optimizer that implements the Adagrad algorithm.
|
||
|
|
||
|
Adagrad is an optimizer with parameter-specific learning rates,
|
||
|
which are adapted relative to how frequently a parameter gets
|
||
|
updated during training. The more updates a parameter receives,
|
||
|
the smaller the updates.
|
||
|
|
||
|
Args:
|
||
|
learning_rate: Initial value for the learning rate:
|
||
|
either a floating point value,
|
||
|
or a `tf.keras.optimizers.schedules.LearningRateSchedule` instance.
|
||
|
Defaults to 0.001.
|
||
|
Note that `Adagrad` tends to benefit from higher initial learning rate
|
||
|
values compared to other optimizers.
|
||
|
To match the exact form in the original paper, use 1.0.
|
||
|
initial_accumulator_value: Floating point value.
|
||
|
Starting value for the accumulators (per-parameter momentum values).
|
||
|
Must be non-negative.
|
||
|
epsilon: Small floating point value used to maintain numerical stability.
|
||
|
{{base_optimizer_keyword_args}}
|
||
|
|
||
|
Reference:
|
||
|
- [Duchi et al., 2011](
|
||
|
http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf).
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
learning_rate=0.001,
|
||
|
initial_accumulator_value=0.1,
|
||
|
epsilon=1e-7,
|
||
|
weight_decay=None,
|
||
|
clipnorm=None,
|
||
|
clipvalue=None,
|
||
|
global_clipnorm=None,
|
||
|
use_ema=False,
|
||
|
ema_momentum=0.99,
|
||
|
ema_overwrite_frequency=None,
|
||
|
jit_compile=True,
|
||
|
name="Adagrad",
|
||
|
**kwargs
|
||
|
):
|
||
|
super().__init__(
|
||
|
weight_decay=weight_decay,
|
||
|
clipnorm=clipnorm,
|
||
|
clipvalue=clipvalue,
|
||
|
global_clipnorm=global_clipnorm,
|
||
|
use_ema=use_ema,
|
||
|
ema_momentum=ema_momentum,
|
||
|
ema_overwrite_frequency=ema_overwrite_frequency,
|
||
|
jit_compile=jit_compile,
|
||
|
name=name,
|
||
|
**kwargs
|
||
|
)
|
||
|
self._learning_rate = self._build_learning_rate(learning_rate)
|
||
|
self.initial_accumulator_value = initial_accumulator_value
|
||
|
self.epsilon = epsilon
|
||
|
|
||
|
def build(self, var_list):
|
||
|
super().build(var_list)
|
||
|
if hasattr(self, "_built") and self._built:
|
||
|
return
|
||
|
self._built = True
|
||
|
self._accumulators = []
|
||
|
initializer = initializers.Constant(self.initial_accumulator_value)
|
||
|
for var in var_list:
|
||
|
self._accumulators.append(
|
||
|
self.add_variable_from_reference(
|
||
|
var,
|
||
|
"accumulator",
|
||
|
initial_value=initializer(shape=var.shape, dtype=var.dtype),
|
||
|
)
|
||
|
)
|
||
|
|
||
|
def update_step(self, grad, variable):
|
||
|
"""Update step given gradient and the associated model variable."""
|
||
|
lr = tf.cast(self.learning_rate, variable.dtype)
|
||
|
|
||
|
var_key = self._var_key(variable)
|
||
|
accumulator = self._accumulators[self._index_dict[var_key]]
|
||
|
|
||
|
if isinstance(grad, tf.IndexedSlices):
|
||
|
# Sparse gradients.
|
||
|
accumulator.scatter_add(
|
||
|
tf.IndexedSlices(grad.values * grad.values, grad.indices)
|
||
|
)
|
||
|
sparse_accumulator = tf.gather(accumulator, indices=grad.indices)
|
||
|
sparse_denominator = tf.sqrt(sparse_accumulator + self.epsilon)
|
||
|
variable.scatter_add(
|
||
|
tf.IndexedSlices(
|
||
|
-lr * grad.values / sparse_denominator, grad.indices
|
||
|
)
|
||
|
)
|
||
|
else:
|
||
|
# Dense gradients.
|
||
|
accumulator.assign_add(grad * grad)
|
||
|
variable.assign_sub(lr * grad / tf.sqrt(accumulator + self.epsilon))
|
||
|
|
||
|
def get_config(self):
|
||
|
config = super().get_config()
|
||
|
|
||
|
config.update(
|
||
|
{
|
||
|
"learning_rate": self._serialize_hyperparameter(
|
||
|
self._learning_rate
|
||
|
),
|
||
|
"initial_accumulator_value": self.initial_accumulator_value,
|
||
|
"epsilon": self.epsilon,
|
||
|
}
|
||
|
)
|
||
|
return config
|
||
|
|
||
|
|
||
|
Adagrad.__doc__ = Adagrad.__doc__.replace(
|
||
|
"{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args
|
||
|
)
|