Intelegentny_Pszczelarz/.venv/Lib/site-packages/sklearn/isotonic.py

464 lines
15 KiB
Python
Raw Normal View History

2023-06-19 00:49:18 +02:00
# Authors: Fabian Pedregosa <fabian@fseoane.net>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Nelle Varoquaux <nelle.varoquaux@gmail.com>
# License: BSD 3 clause
import numpy as np
from scipy import interpolate
from scipy.stats import spearmanr
from numbers import Real
import warnings
import math
from .base import BaseEstimator, TransformerMixin, RegressorMixin
from .utils import check_array, check_consistent_length
from .utils.validation import _check_sample_weight
from .utils._param_validation import Interval, StrOptions
from ._isotonic import _inplace_contiguous_isotonic_regression, _make_unique
__all__ = ["check_increasing", "isotonic_regression", "IsotonicRegression"]
def check_increasing(x, y):
"""Determine whether y is monotonically correlated with x.
y is found increasing or decreasing with respect to x based on a Spearman
correlation test.
Parameters
----------
x : array-like of shape (n_samples,)
Training data.
y : array-like of shape (n_samples,)
Training target.
Returns
-------
increasing_bool : boolean
Whether the relationship is increasing or decreasing.
Notes
-----
The Spearman correlation coefficient is estimated from the data, and the
sign of the resulting estimate is used as the result.
In the event that the 95% confidence interval based on Fisher transform
spans zero, a warning is raised.
References
----------
Fisher transformation. Wikipedia.
https://en.wikipedia.org/wiki/Fisher_transformation
"""
# Calculate Spearman rho estimate and set return accordingly.
rho, _ = spearmanr(x, y)
increasing_bool = rho >= 0
# Run Fisher transform to get the rho CI, but handle rho=+/-1
if rho not in [-1.0, 1.0] and len(x) > 3:
F = 0.5 * math.log((1.0 + rho) / (1.0 - rho))
F_se = 1 / math.sqrt(len(x) - 3)
# Use a 95% CI, i.e., +/-1.96 S.E.
# https://en.wikipedia.org/wiki/Fisher_transformation
rho_0 = math.tanh(F - 1.96 * F_se)
rho_1 = math.tanh(F + 1.96 * F_se)
# Warn if the CI spans zero.
if np.sign(rho_0) != np.sign(rho_1):
warnings.warn(
"Confidence interval of the Spearman "
"correlation coefficient spans zero. "
"Determination of ``increasing`` may be "
"suspect."
)
return increasing_bool
def isotonic_regression(
y, *, sample_weight=None, y_min=None, y_max=None, increasing=True
):
"""Solve the isotonic regression model.
Read more in the :ref:`User Guide <isotonic>`.
Parameters
----------
y : array-like of shape (n_samples,)
The data.
sample_weight : array-like of shape (n_samples,), default=None
Weights on each point of the regression.
If None, weight is set to 1 (equal weights).
y_min : float, default=None
Lower bound on the lowest predicted value (the minimum value may
still be higher). If not set, defaults to -inf.
y_max : float, default=None
Upper bound on the highest predicted value (the maximum may still be
lower). If not set, defaults to +inf.
increasing : bool, default=True
Whether to compute ``y_`` is increasing (if set to True) or decreasing
(if set to False).
Returns
-------
y_ : list of floats
Isotonic fit of y.
References
----------
"Active set algorithms for isotonic regression; A unifying framework"
by Michael J. Best and Nilotpal Chakravarti, section 3.
"""
order = np.s_[:] if increasing else np.s_[::-1]
y = check_array(y, ensure_2d=False, input_name="y", dtype=[np.float64, np.float32])
y = np.array(y[order], dtype=y.dtype)
sample_weight = _check_sample_weight(sample_weight, y, dtype=y.dtype, copy=True)
sample_weight = np.ascontiguousarray(sample_weight[order])
_inplace_contiguous_isotonic_regression(y, sample_weight)
if y_min is not None or y_max is not None:
# Older versions of np.clip don't accept None as a bound, so use np.inf
if y_min is None:
y_min = -np.inf
if y_max is None:
y_max = np.inf
np.clip(y, y_min, y_max, y)
return y[order]
class IsotonicRegression(RegressorMixin, TransformerMixin, BaseEstimator):
"""Isotonic regression model.
Read more in the :ref:`User Guide <isotonic>`.
.. versionadded:: 0.13
Parameters
----------
y_min : float, default=None
Lower bound on the lowest predicted value (the minimum value may
still be higher). If not set, defaults to -inf.
y_max : float, default=None
Upper bound on the highest predicted value (the maximum may still be
lower). If not set, defaults to +inf.
increasing : bool or 'auto', default=True
Determines whether the predictions should be constrained to increase
or decrease with `X`. 'auto' will decide based on the Spearman
correlation estimate's sign.
out_of_bounds : {'nan', 'clip', 'raise'}, default='nan'
Handles how `X` values outside of the training domain are handled
during prediction.
- 'nan', predictions will be NaN.
- 'clip', predictions will be set to the value corresponding to
the nearest train interval endpoint.
- 'raise', a `ValueError` is raised.
Attributes
----------
X_min_ : float
Minimum value of input array `X_` for left bound.
X_max_ : float
Maximum value of input array `X_` for right bound.
X_thresholds_ : ndarray of shape (n_thresholds,)
Unique ascending `X` values used to interpolate
the y = f(X) monotonic function.
.. versionadded:: 0.24
y_thresholds_ : ndarray of shape (n_thresholds,)
De-duplicated `y` values suitable to interpolate the y = f(X)
monotonic function.
.. versionadded:: 0.24
f_ : function
The stepwise interpolating function that covers the input domain ``X``.
increasing_ : bool
Inferred value for ``increasing``.
See Also
--------
sklearn.linear_model.LinearRegression : Ordinary least squares Linear
Regression.
sklearn.ensemble.HistGradientBoostingRegressor : Gradient boosting that
is a non-parametric model accepting monotonicity constraints.
isotonic_regression : Function to solve the isotonic regression model.
Notes
-----
Ties are broken using the secondary method from de Leeuw, 1977.
References
----------
Isotonic Median Regression: A Linear Programming Approach
Nilotpal Chakravarti
Mathematics of Operations Research
Vol. 14, No. 2 (May, 1989), pp. 303-308
Isotone Optimization in R : Pool-Adjacent-Violators
Algorithm (PAVA) and Active Set Methods
de Leeuw, Hornik, Mair
Journal of Statistical Software 2009
Correctness of Kruskal's algorithms for monotone regression with ties
de Leeuw, Psychometrica, 1977
Examples
--------
>>> from sklearn.datasets import make_regression
>>> from sklearn.isotonic import IsotonicRegression
>>> X, y = make_regression(n_samples=10, n_features=1, random_state=41)
>>> iso_reg = IsotonicRegression().fit(X, y)
>>> iso_reg.predict([.1, .2])
array([1.8628..., 3.7256...])
"""
_parameter_constraints: dict = {
"y_min": [Interval(Real, None, None, closed="both"), None],
"y_max": [Interval(Real, None, None, closed="both"), None],
"increasing": ["boolean", StrOptions({"auto"})],
"out_of_bounds": [StrOptions({"nan", "clip", "raise"})],
}
def __init__(self, *, y_min=None, y_max=None, increasing=True, out_of_bounds="nan"):
self.y_min = y_min
self.y_max = y_max
self.increasing = increasing
self.out_of_bounds = out_of_bounds
def _check_input_data_shape(self, X):
if not (X.ndim == 1 or (X.ndim == 2 and X.shape[1] == 1)):
msg = (
"Isotonic regression input X should be a 1d array or "
"2d array with 1 feature"
)
raise ValueError(msg)
def _build_f(self, X, y):
"""Build the f_ interp1d function."""
bounds_error = self.out_of_bounds == "raise"
if len(y) == 1:
# single y, constant prediction
self.f_ = lambda x: y.repeat(x.shape)
else:
self.f_ = interpolate.interp1d(
X, y, kind="linear", bounds_error=bounds_error
)
def _build_y(self, X, y, sample_weight, trim_duplicates=True):
"""Build the y_ IsotonicRegression."""
self._check_input_data_shape(X)
X = X.reshape(-1) # use 1d view
# Determine increasing if auto-determination requested
if self.increasing == "auto":
self.increasing_ = check_increasing(X, y)
else:
self.increasing_ = self.increasing
# If sample_weights is passed, removed zero-weight values and clean
# order
sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
mask = sample_weight > 0
X, y, sample_weight = X[mask], y[mask], sample_weight[mask]
order = np.lexsort((y, X))
X, y, sample_weight = [array[order] for array in [X, y, sample_weight]]
unique_X, unique_y, unique_sample_weight = _make_unique(X, y, sample_weight)
X = unique_X
y = isotonic_regression(
unique_y,
sample_weight=unique_sample_weight,
y_min=self.y_min,
y_max=self.y_max,
increasing=self.increasing_,
)
# Handle the left and right bounds on X
self.X_min_, self.X_max_ = np.min(X), np.max(X)
if trim_duplicates:
# Remove unnecessary points for faster prediction
keep_data = np.ones((len(y),), dtype=bool)
# Aside from the 1st and last point, remove points whose y values
# are equal to both the point before and the point after it.
keep_data[1:-1] = np.logical_or(
np.not_equal(y[1:-1], y[:-2]), np.not_equal(y[1:-1], y[2:])
)
return X[keep_data], y[keep_data]
else:
# The ability to turn off trim_duplicates is only used to it make
# easier to unit test that removing duplicates in y does not have
# any impact the resulting interpolation function (besides
# prediction speed).
return X, y
def fit(self, X, y, sample_weight=None):
"""Fit the model using X, y as training data.
Parameters
----------
X : array-like of shape (n_samples,) or (n_samples, 1)
Training data.
.. versionchanged:: 0.24
Also accepts 2d array with 1 feature.
y : array-like of shape (n_samples,)
Training target.
sample_weight : array-like of shape (n_samples,), default=None
Weights. If set to None, all weights will be set to 1 (equal
weights).
Returns
-------
self : object
Returns an instance of self.
Notes
-----
X is stored for future use, as :meth:`transform` needs X to interpolate
new input data.
"""
self._validate_params()
check_params = dict(accept_sparse=False, ensure_2d=False)
X = check_array(
X, input_name="X", dtype=[np.float64, np.float32], **check_params
)
y = check_array(y, input_name="y", dtype=X.dtype, **check_params)
check_consistent_length(X, y, sample_weight)
# Transform y by running the isotonic regression algorithm and
# transform X accordingly.
X, y = self._build_y(X, y, sample_weight)
# It is necessary to store the non-redundant part of the training set
# on the model to make it possible to support model persistence via
# the pickle module as the object built by scipy.interp1d is not
# picklable directly.
self.X_thresholds_, self.y_thresholds_ = X, y
# Build the interpolation function
self._build_f(X, y)
return self
def _transform(self, T):
"""`_transform` is called by both `transform` and `predict` methods.
Since `transform` is wrapped to output arrays of specific types (e.g.
NumPy arrays, pandas DataFrame), we cannot make `predict` call `transform`
directly.
The above behaviour could be changed in the future, if we decide to output
other type of arrays when calling `predict`.
"""
if hasattr(self, "X_thresholds_"):
dtype = self.X_thresholds_.dtype
else:
dtype = np.float64
T = check_array(T, dtype=dtype, ensure_2d=False)
self._check_input_data_shape(T)
T = T.reshape(-1) # use 1d view
if self.out_of_bounds == "clip":
T = np.clip(T, self.X_min_, self.X_max_)
res = self.f_(T)
# on scipy 0.17, interp1d up-casts to float64, so we cast back
res = res.astype(T.dtype)
return res
def transform(self, T):
"""Transform new data by linear interpolation.
Parameters
----------
T : array-like of shape (n_samples,) or (n_samples, 1)
Data to transform.
.. versionchanged:: 0.24
Also accepts 2d array with 1 feature.
Returns
-------
y_pred : ndarray of shape (n_samples,)
The transformed data.
"""
return self._transform(T)
def predict(self, T):
"""Predict new data by linear interpolation.
Parameters
----------
T : array-like of shape (n_samples,) or (n_samples, 1)
Data to transform.
Returns
-------
y_pred : ndarray of shape (n_samples,)
Transformed data.
"""
return self._transform(T)
# We implement get_feature_names_out here instead of using
# `ClassNamePrefixFeaturesOutMixin`` because `input_features` are ignored.
# `input_features` are ignored because `IsotonicRegression` accepts 1d
# arrays and the semantics of `feature_names_in_` are not clear for 1d arrays.
def get_feature_names_out(self, input_features=None):
"""Get output feature names for transformation.
Parameters
----------
input_features : array-like of str or None, default=None
Ignored.
Returns
-------
feature_names_out : ndarray of str objects
An ndarray with one string i.e. ["isotonicregression0"].
"""
class_name = self.__class__.__name__.lower()
return np.asarray([f"{class_name}0"], dtype=object)
def __getstate__(self):
"""Pickle-protocol - return state of the estimator."""
state = super().__getstate__()
# remove interpolation method
state.pop("f_", None)
return state
def __setstate__(self, state):
"""Pickle-protocol - set state of the estimator.
We need to rebuild the interpolation function.
"""
super().__setstate__(state)
if hasattr(self, "X_thresholds_") and hasattr(self, "y_thresholds_"):
self._build_f(self.X_thresholds_, self.y_thresholds_)
def _more_tags(self):
return {"X_types": ["1darray"]}