118 lines
3.5 KiB
Python
118 lines
3.5 KiB
Python
|
"""`functools.lru_cache` compatible memoizing function decorators."""
|
||
|
|
||
|
__all__ = ("fifo_cache", "lfu_cache", "lru_cache", "mru_cache", "rr_cache", "ttl_cache")
|
||
|
|
||
|
import math
|
||
|
import random
|
||
|
import time
|
||
|
|
||
|
try:
|
||
|
from threading import RLock
|
||
|
except ImportError: # pragma: no cover
|
||
|
from dummy_threading import RLock
|
||
|
|
||
|
from . import FIFOCache, LFUCache, LRUCache, MRUCache, RRCache, TTLCache
|
||
|
from . import cached
|
||
|
from . import keys
|
||
|
|
||
|
|
||
|
class _UnboundTTLCache(TTLCache):
|
||
|
def __init__(self, ttl, timer):
|
||
|
TTLCache.__init__(self, math.inf, ttl, timer)
|
||
|
|
||
|
@property
|
||
|
def maxsize(self):
|
||
|
return None
|
||
|
|
||
|
|
||
|
def _cache(cache, maxsize, typed):
|
||
|
def decorator(func):
|
||
|
key = keys.typedkey if typed else keys.hashkey
|
||
|
wrapper = cached(cache=cache, key=key, lock=RLock(), info=True)(func)
|
||
|
wrapper.cache_parameters = lambda: {"maxsize": maxsize, "typed": typed}
|
||
|
return wrapper
|
||
|
|
||
|
return decorator
|
||
|
|
||
|
|
||
|
def fifo_cache(maxsize=128, typed=False):
|
||
|
"""Decorator to wrap a function with a memoizing callable that saves
|
||
|
up to `maxsize` results based on a First In First Out (FIFO)
|
||
|
algorithm.
|
||
|
|
||
|
"""
|
||
|
if maxsize is None:
|
||
|
return _cache({}, None, typed)
|
||
|
elif callable(maxsize):
|
||
|
return _cache(FIFOCache(128), 128, typed)(maxsize)
|
||
|
else:
|
||
|
return _cache(FIFOCache(maxsize), maxsize, typed)
|
||
|
|
||
|
|
||
|
def lfu_cache(maxsize=128, typed=False):
|
||
|
"""Decorator to wrap a function with a memoizing callable that saves
|
||
|
up to `maxsize` results based on a Least Frequently Used (LFU)
|
||
|
algorithm.
|
||
|
|
||
|
"""
|
||
|
if maxsize is None:
|
||
|
return _cache({}, None, typed)
|
||
|
elif callable(maxsize):
|
||
|
return _cache(LFUCache(128), 128, typed)(maxsize)
|
||
|
else:
|
||
|
return _cache(LFUCache(maxsize), maxsize, typed)
|
||
|
|
||
|
|
||
|
def lru_cache(maxsize=128, typed=False):
|
||
|
"""Decorator to wrap a function with a memoizing callable that saves
|
||
|
up to `maxsize` results based on a Least Recently Used (LRU)
|
||
|
algorithm.
|
||
|
|
||
|
"""
|
||
|
if maxsize is None:
|
||
|
return _cache({}, None, typed)
|
||
|
elif callable(maxsize):
|
||
|
return _cache(LRUCache(128), 128, typed)(maxsize)
|
||
|
else:
|
||
|
return _cache(LRUCache(maxsize), maxsize, typed)
|
||
|
|
||
|
|
||
|
def mru_cache(maxsize=128, typed=False):
|
||
|
"""Decorator to wrap a function with a memoizing callable that saves
|
||
|
up to `maxsize` results based on a Most Recently Used (MRU)
|
||
|
algorithm.
|
||
|
"""
|
||
|
if maxsize is None:
|
||
|
return _cache({}, None, typed)
|
||
|
elif callable(maxsize):
|
||
|
return _cache(MRUCache(128), 128, typed)(maxsize)
|
||
|
else:
|
||
|
return _cache(MRUCache(maxsize), maxsize, typed)
|
||
|
|
||
|
|
||
|
def rr_cache(maxsize=128, choice=random.choice, typed=False):
|
||
|
"""Decorator to wrap a function with a memoizing callable that saves
|
||
|
up to `maxsize` results based on a Random Replacement (RR)
|
||
|
algorithm.
|
||
|
|
||
|
"""
|
||
|
if maxsize is None:
|
||
|
return _cache({}, None, typed)
|
||
|
elif callable(maxsize):
|
||
|
return _cache(RRCache(128, choice), 128, typed)(maxsize)
|
||
|
else:
|
||
|
return _cache(RRCache(maxsize, choice), maxsize, typed)
|
||
|
|
||
|
|
||
|
def ttl_cache(maxsize=128, ttl=600, timer=time.monotonic, typed=False):
|
||
|
"""Decorator to wrap a function with a memoizing callable that saves
|
||
|
up to `maxsize` results based on a Least Recently Used (LRU)
|
||
|
algorithm with a per-item time-to-live (TTL) value.
|
||
|
"""
|
||
|
if maxsize is None:
|
||
|
return _cache(_UnboundTTLCache(ttl, timer), None, typed)
|
||
|
elif callable(maxsize):
|
||
|
return _cache(TTLCache(128, ttl, timer), 128, typed)(maxsize)
|
||
|
else:
|
||
|
return _cache(TTLCache(maxsize, ttl, timer), maxsize, typed)
|