273 lines
9.8 KiB
Python
273 lines
9.8 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
|
||
|
"""VGG16 model for Keras.
|
||
|
|
||
|
Reference:
|
||
|
- [Very Deep Convolutional Networks for Large-Scale Image Recognition]
|
||
|
(https://arxiv.org/abs/1409.1556) (ICLR 2015)
|
||
|
"""
|
||
|
|
||
|
import tensorflow.compat.v2 as tf
|
||
|
|
||
|
from keras import backend
|
||
|
from keras.applications import imagenet_utils
|
||
|
from keras.engine import training
|
||
|
from keras.layers import VersionAwareLayers
|
||
|
from keras.utils import data_utils
|
||
|
from keras.utils import layer_utils
|
||
|
|
||
|
# isort: off
|
||
|
from tensorflow.python.util.tf_export import keras_export
|
||
|
|
||
|
WEIGHTS_PATH = (
|
||
|
"https://storage.googleapis.com/tensorflow/keras-applications/"
|
||
|
"vgg16/vgg16_weights_tf_dim_ordering_tf_kernels.h5"
|
||
|
)
|
||
|
WEIGHTS_PATH_NO_TOP = (
|
||
|
"https://storage.googleapis.com/tensorflow/"
|
||
|
"keras-applications/vgg16/"
|
||
|
"vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5"
|
||
|
)
|
||
|
|
||
|
layers = VersionAwareLayers()
|
||
|
|
||
|
|
||
|
@keras_export("keras.applications.vgg16.VGG16", "keras.applications.VGG16")
|
||
|
def VGG16(
|
||
|
include_top=True,
|
||
|
weights="imagenet",
|
||
|
input_tensor=None,
|
||
|
input_shape=None,
|
||
|
pooling=None,
|
||
|
classes=1000,
|
||
|
classifier_activation="softmax",
|
||
|
):
|
||
|
"""Instantiates the VGG16 model.
|
||
|
|
||
|
Reference:
|
||
|
- [Very Deep Convolutional Networks for Large-Scale Image Recognition](
|
||
|
https://arxiv.org/abs/1409.1556) (ICLR 2015)
|
||
|
|
||
|
For image classification use cases, see
|
||
|
[this page for detailed examples](
|
||
|
https://keras.io/api/applications/#usage-examples-for-image-classification-models).
|
||
|
|
||
|
For transfer learning use cases, make sure to read the
|
||
|
[guide to transfer learning & fine-tuning](
|
||
|
https://keras.io/guides/transfer_learning/).
|
||
|
|
||
|
The default input size for this model is 224x224.
|
||
|
|
||
|
Note: each Keras Application expects a specific kind of input preprocessing.
|
||
|
For VGG16, call `tf.keras.applications.vgg16.preprocess_input` on your
|
||
|
inputs before passing them to the model.
|
||
|
`vgg16.preprocess_input` will convert the input images from RGB to BGR,
|
||
|
then will zero-center each color channel with respect to the ImageNet
|
||
|
dataset, without scaling.
|
||
|
|
||
|
Args:
|
||
|
include_top: whether to include the 3 fully-connected
|
||
|
layers at the top of the network.
|
||
|
weights: one of `None` (random initialization),
|
||
|
'imagenet' (pre-training on ImageNet),
|
||
|
or the path to the weights file to be loaded.
|
||
|
input_tensor: optional Keras tensor
|
||
|
(i.e. output of `layers.Input()`)
|
||
|
to use as image input for the model.
|
||
|
input_shape: optional shape tuple, only to be specified
|
||
|
if `include_top` is False (otherwise the input shape
|
||
|
has to be `(224, 224, 3)`
|
||
|
(with `channels_last` data format)
|
||
|
or `(3, 224, 224)` (with `channels_first` data format).
|
||
|
It should have exactly 3 input channels,
|
||
|
and width and height should be no smaller than 32.
|
||
|
E.g. `(200, 200, 3)` would be one valid value.
|
||
|
pooling: Optional pooling mode for feature extraction
|
||
|
when `include_top` is `False`.
|
||
|
- `None` means that the output of the model will be
|
||
|
the 4D tensor output of the
|
||
|
last convolutional block.
|
||
|
- `avg` means that global average pooling
|
||
|
will be applied to the output of the
|
||
|
last convolutional block, and thus
|
||
|
the output of the model will be a 2D tensor.
|
||
|
- `max` means that global max pooling will
|
||
|
be applied.
|
||
|
classes: optional number of classes to classify images
|
||
|
into, only to be specified if `include_top` is True, and
|
||
|
if no `weights` argument is specified.
|
||
|
classifier_activation: A `str` or callable. The activation function to
|
||
|
use on the "top" layer. Ignored unless `include_top=True`. Set
|
||
|
`classifier_activation=None` to return the logits of the "top"
|
||
|
layer. When loading pretrained weights, `classifier_activation` can
|
||
|
only be `None` or `"softmax"`.
|
||
|
|
||
|
Returns:
|
||
|
A `keras.Model` instance.
|
||
|
"""
|
||
|
if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)):
|
||
|
raise ValueError(
|
||
|
"The `weights` argument should be either "
|
||
|
"`None` (random initialization), `imagenet` "
|
||
|
"(pre-training on ImageNet), "
|
||
|
"or the path to the weights file to be loaded. Received: "
|
||
|
f"weights={weights}"
|
||
|
)
|
||
|
|
||
|
if weights == "imagenet" and include_top and classes != 1000:
|
||
|
raise ValueError(
|
||
|
'If using `weights` as `"imagenet"` with `include_top` '
|
||
|
"as true, `classes` should be 1000. "
|
||
|
f"Received `classes={classes}`"
|
||
|
)
|
||
|
# Determine proper input shape
|
||
|
input_shape = imagenet_utils.obtain_input_shape(
|
||
|
input_shape,
|
||
|
default_size=224,
|
||
|
min_size=32,
|
||
|
data_format=backend.image_data_format(),
|
||
|
require_flatten=include_top,
|
||
|
weights=weights,
|
||
|
)
|
||
|
|
||
|
if input_tensor is None:
|
||
|
img_input = layers.Input(shape=input_shape)
|
||
|
else:
|
||
|
if not backend.is_keras_tensor(input_tensor):
|
||
|
img_input = layers.Input(tensor=input_tensor, shape=input_shape)
|
||
|
else:
|
||
|
img_input = input_tensor
|
||
|
# Block 1
|
||
|
x = layers.Conv2D(
|
||
|
64, (3, 3), activation="relu", padding="same", name="block1_conv1"
|
||
|
)(img_input)
|
||
|
x = layers.Conv2D(
|
||
|
64, (3, 3), activation="relu", padding="same", name="block1_conv2"
|
||
|
)(x)
|
||
|
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block1_pool")(x)
|
||
|
|
||
|
# Block 2
|
||
|
x = layers.Conv2D(
|
||
|
128, (3, 3), activation="relu", padding="same", name="block2_conv1"
|
||
|
)(x)
|
||
|
x = layers.Conv2D(
|
||
|
128, (3, 3), activation="relu", padding="same", name="block2_conv2"
|
||
|
)(x)
|
||
|
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block2_pool")(x)
|
||
|
|
||
|
# Block 3
|
||
|
x = layers.Conv2D(
|
||
|
256, (3, 3), activation="relu", padding="same", name="block3_conv1"
|
||
|
)(x)
|
||
|
x = layers.Conv2D(
|
||
|
256, (3, 3), activation="relu", padding="same", name="block3_conv2"
|
||
|
)(x)
|
||
|
x = layers.Conv2D(
|
||
|
256, (3, 3), activation="relu", padding="same", name="block3_conv3"
|
||
|
)(x)
|
||
|
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block3_pool")(x)
|
||
|
|
||
|
# Block 4
|
||
|
x = layers.Conv2D(
|
||
|
512, (3, 3), activation="relu", padding="same", name="block4_conv1"
|
||
|
)(x)
|
||
|
x = layers.Conv2D(
|
||
|
512, (3, 3), activation="relu", padding="same", name="block4_conv2"
|
||
|
)(x)
|
||
|
x = layers.Conv2D(
|
||
|
512, (3, 3), activation="relu", padding="same", name="block4_conv3"
|
||
|
)(x)
|
||
|
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block4_pool")(x)
|
||
|
|
||
|
# Block 5
|
||
|
x = layers.Conv2D(
|
||
|
512, (3, 3), activation="relu", padding="same", name="block5_conv1"
|
||
|
)(x)
|
||
|
x = layers.Conv2D(
|
||
|
512, (3, 3), activation="relu", padding="same", name="block5_conv2"
|
||
|
)(x)
|
||
|
x = layers.Conv2D(
|
||
|
512, (3, 3), activation="relu", padding="same", name="block5_conv3"
|
||
|
)(x)
|
||
|
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block5_pool")(x)
|
||
|
|
||
|
if include_top:
|
||
|
# Classification block
|
||
|
x = layers.Flatten(name="flatten")(x)
|
||
|
x = layers.Dense(4096, activation="relu", name="fc1")(x)
|
||
|
x = layers.Dense(4096, activation="relu", name="fc2")(x)
|
||
|
|
||
|
imagenet_utils.validate_activation(classifier_activation, weights)
|
||
|
x = layers.Dense(
|
||
|
classes, activation=classifier_activation, name="predictions"
|
||
|
)(x)
|
||
|
else:
|
||
|
if pooling == "avg":
|
||
|
x = layers.GlobalAveragePooling2D()(x)
|
||
|
elif pooling == "max":
|
||
|
x = layers.GlobalMaxPooling2D()(x)
|
||
|
|
||
|
# Ensure that the model takes into account
|
||
|
# any potential predecessors of `input_tensor`.
|
||
|
if input_tensor is not None:
|
||
|
inputs = layer_utils.get_source_inputs(input_tensor)
|
||
|
else:
|
||
|
inputs = img_input
|
||
|
# Create model.
|
||
|
model = training.Model(inputs, x, name="vgg16")
|
||
|
|
||
|
# Load weights.
|
||
|
if weights == "imagenet":
|
||
|
if include_top:
|
||
|
weights_path = data_utils.get_file(
|
||
|
"vgg16_weights_tf_dim_ordering_tf_kernels.h5",
|
||
|
WEIGHTS_PATH,
|
||
|
cache_subdir="models",
|
||
|
file_hash="64373286793e3c8b2b4e3219cbf3544b",
|
||
|
)
|
||
|
else:
|
||
|
weights_path = data_utils.get_file(
|
||
|
"vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5",
|
||
|
WEIGHTS_PATH_NO_TOP,
|
||
|
cache_subdir="models",
|
||
|
file_hash="6d6bbae143d832006294945121d1f1fc",
|
||
|
)
|
||
|
model.load_weights(weights_path)
|
||
|
elif weights is not None:
|
||
|
model.load_weights(weights)
|
||
|
|
||
|
return model
|
||
|
|
||
|
|
||
|
@keras_export("keras.applications.vgg16.preprocess_input")
|
||
|
def preprocess_input(x, data_format=None):
|
||
|
return imagenet_utils.preprocess_input(
|
||
|
x, data_format=data_format, mode="caffe"
|
||
|
)
|
||
|
|
||
|
|
||
|
@keras_export("keras.applications.vgg16.decode_predictions")
|
||
|
def decode_predictions(preds, top=5):
|
||
|
return imagenet_utils.decode_predictions(preds, top=top)
|
||
|
|
||
|
|
||
|
preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format(
|
||
|
mode="",
|
||
|
ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_CAFFE,
|
||
|
error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC,
|
||
|
)
|
||
|
decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
|