192 lines
7.8 KiB
Python
192 lines
7.8 KiB
Python
|
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""A layer that produces a dense `Tensor` based on given `feature_columns`."""
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import json
|
||
|
|
||
|
import tensorflow.compat.v2 as tf
|
||
|
|
||
|
from keras import backend
|
||
|
from keras.feature_column import base_feature_layer as kfc
|
||
|
from keras.saving.legacy.saved_model import json_utils
|
||
|
|
||
|
# isort: off
|
||
|
from tensorflow.python.util.tf_export import keras_export
|
||
|
|
||
|
|
||
|
@keras_export(v1=["keras.layers.DenseFeatures"])
|
||
|
class DenseFeatures(kfc._BaseFeaturesLayer):
|
||
|
"""A layer that produces a dense `Tensor` based on given `feature_columns`.
|
||
|
|
||
|
Generally a single example in training data is described with
|
||
|
FeatureColumns. At the first layer of the model, this column-oriented data
|
||
|
should be converted to a single `Tensor`.
|
||
|
|
||
|
This layer can be called multiple times with different features.
|
||
|
|
||
|
This is the V1 version of this layer that uses variable_scope's or
|
||
|
partitioner to create variables which works well with PartitionedVariables.
|
||
|
Variable scopes are deprecated in V2, so the V2 version uses name_scopes
|
||
|
instead. But currently that lacks support for partitioned variables. Use
|
||
|
this if you need partitioned variables. Use the partitioner argument if you
|
||
|
have a Keras model and uses
|
||
|
`tf.compat.v1.keras.estimator.model_to_estimator` for training.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
price = tf.feature_column.numeric_column('price')
|
||
|
keywords_embedded = tf.feature_column.embedding_column(
|
||
|
tf.feature_column.categorical_column_with_hash_bucket("keywords", 10K),
|
||
|
dimension=16)
|
||
|
columns = [price, keywords_embedded, ...]
|
||
|
partitioner = tf.compat.v1.fixed_size_partitioner(num_shards=4)
|
||
|
feature_layer = tf.compat.v1.keras.layers.DenseFeatures(
|
||
|
feature_columns=columns, partitioner=partitioner)
|
||
|
|
||
|
features = tf.io.parse_example(
|
||
|
..., features=tf.feature_column.make_parse_example_spec(columns))
|
||
|
dense_tensor = feature_layer(features)
|
||
|
for units in [128, 64, 32]:
|
||
|
dense_tensor = tf.compat.v1.keras.layers.Dense(
|
||
|
units, activation='relu')(dense_tensor)
|
||
|
prediction = tf.compat.v1.keras.layers.Dense(1)(dense_tensor)
|
||
|
```
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
feature_columns,
|
||
|
trainable=True,
|
||
|
name=None,
|
||
|
partitioner=None,
|
||
|
**kwargs
|
||
|
):
|
||
|
"""Constructs a DenseFeatures layer.
|
||
|
|
||
|
Args:
|
||
|
feature_columns: An iterable containing the FeatureColumns to use as
|
||
|
inputs to your model. All items should be instances of classes
|
||
|
derived from `DenseColumn` such as `numeric_column`,
|
||
|
`embedding_column`, `bucketized_column`, `indicator_column`. If you
|
||
|
have categorical features, you can wrap them with an
|
||
|
`embedding_column` or `indicator_column`.
|
||
|
trainable: Boolean, whether the layer's variables will be updated via
|
||
|
gradient descent during training.
|
||
|
name: Name to give to the DenseFeatures.
|
||
|
partitioner: Partitioner for input layer. Defaults to None.
|
||
|
**kwargs: Keyword arguments to construct a layer.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if an item in `feature_columns` is not a `DenseColumn`.
|
||
|
"""
|
||
|
super().__init__(
|
||
|
feature_columns=feature_columns,
|
||
|
trainable=trainable,
|
||
|
name=name,
|
||
|
partitioner=partitioner,
|
||
|
expected_column_type=tf.__internal__.feature_column.DenseColumn,
|
||
|
**kwargs
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def _is_feature_layer(self):
|
||
|
return True
|
||
|
|
||
|
@property
|
||
|
def _tracking_metadata(self):
|
||
|
"""String stored in metadata field in the SavedModel proto.
|
||
|
|
||
|
Returns:
|
||
|
A serialized JSON storing information necessary for recreating this
|
||
|
layer.
|
||
|
"""
|
||
|
metadata = json.loads(super()._tracking_metadata)
|
||
|
metadata["_is_feature_layer"] = True
|
||
|
return json.dumps(metadata, default=json_utils.get_json_type)
|
||
|
|
||
|
def _target_shape(self, input_shape, total_elements):
|
||
|
return (input_shape[0], total_elements)
|
||
|
|
||
|
def call(self, features, cols_to_output_tensors=None, training=None):
|
||
|
"""Returns a dense tensor corresponding to the `feature_columns`.
|
||
|
|
||
|
Example usage:
|
||
|
|
||
|
>>> t1 = tf.feature_column.embedding_column(
|
||
|
... tf.feature_column.categorical_column_with_hash_bucket("t1", 2),
|
||
|
... dimension=8)
|
||
|
>>> t2 = tf.feature_column.numeric_column('t2')
|
||
|
>>> feature_layer = tf.compat.v1.keras.layers.DenseFeatures([t1, t2])
|
||
|
>>> features = {"t1": tf.constant(["a", "b"]),
|
||
|
... "t2": tf.constant([1, 2])}
|
||
|
>>> dense_tensor = feature_layer(features, training=True)
|
||
|
|
||
|
Args:
|
||
|
features: A mapping from key to tensors. `FeatureColumn`s look up via
|
||
|
these keys. For example `numeric_column('price')` will look at
|
||
|
'price' key in this dict. Values can be a `SparseTensor` or a
|
||
|
`Tensor` depends on corresponding `FeatureColumn`.
|
||
|
cols_to_output_tensors: If not `None`, this will be filled with a dict
|
||
|
mapping feature columns to output tensors created.
|
||
|
training: Python boolean or None, indicating whether to the layer is
|
||
|
being run in training mode. This argument is passed to the call
|
||
|
method of any `FeatureColumn` that takes a `training` argument. For
|
||
|
example, if a `FeatureColumn` performed dropout, the column could
|
||
|
expose a `training` argument to control whether the dropout should
|
||
|
be applied. If `None`, defaults to
|
||
|
`tf.keras.backend.learning_phase()`.
|
||
|
|
||
|
|
||
|
Returns:
|
||
|
A `Tensor` which represents input layer of a model. Its shape
|
||
|
is (batch_size, first_layer_dimension) and its dtype is `float32`.
|
||
|
first_layer_dimension is determined based on given `feature_columns`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If features are not a dictionary.
|
||
|
"""
|
||
|
if training is None:
|
||
|
training = backend.learning_phase()
|
||
|
if not isinstance(features, dict):
|
||
|
raise ValueError(
|
||
|
"We expected a dictionary here. Instead we got: ", features
|
||
|
)
|
||
|
transformation_cache = (
|
||
|
tf.__internal__.feature_column.FeatureTransformationCache(features)
|
||
|
)
|
||
|
output_tensors = []
|
||
|
for column in self._feature_columns:
|
||
|
with backend.name_scope(column.name):
|
||
|
try:
|
||
|
tensor = column.get_dense_tensor(
|
||
|
transformation_cache,
|
||
|
self._state_manager,
|
||
|
training=training,
|
||
|
)
|
||
|
except TypeError:
|
||
|
tensor = column.get_dense_tensor(
|
||
|
transformation_cache, self._state_manager
|
||
|
)
|
||
|
processed_tensors = self._process_dense_tensor(column, tensor)
|
||
|
if cols_to_output_tensors is not None:
|
||
|
cols_to_output_tensors[column] = processed_tensors
|
||
|
output_tensors.append(processed_tensors)
|
||
|
return self._verify_and_concat_tensors(output_tensors)
|