Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/layers/convolutional/conv3d.py

188 lines
8.0 KiB
Python
Raw Normal View History

2023-06-19 00:49:18 +02:00
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras 3D convolution layer."""
from keras import activations
from keras import constraints
from keras import initializers
from keras import regularizers
from keras.dtensor import utils
from keras.layers.convolutional.base_conv import Conv
# isort: off
from tensorflow.python.util.tf_export import keras_export
@keras_export("keras.layers.Conv3D", "keras.layers.Convolution3D")
class Conv3D(Conv):
"""3D convolution layer (e.g. spatial convolution over volumes).
This layer creates a convolution kernel that is convolved
with the layer input to produce a tensor of
outputs. If `use_bias` is True,
a bias vector is created and added to the outputs. Finally, if
`activation` is not `None`, it is applied to the outputs as well.
When using this layer as the first layer in a model,
provide the keyword argument `input_shape`
(tuple of integers or `None`, does not include the sample axis),
e.g. `input_shape=(128, 128, 128, 1)` for 128x128x128 volumes
with a single channel,
in `data_format="channels_last"`.
Examples:
>>> # The inputs are 28x28x28 volumes with a single channel, and the
>>> # batch size is 4
>>> input_shape =(4, 28, 28, 28, 1)
>>> x = tf.random.normal(input_shape)
>>> y = tf.keras.layers.Conv3D(
... 2, 3, activation='relu', input_shape=input_shape[1:])(x)
>>> print(y.shape)
(4, 26, 26, 26, 2)
>>> # With extended batch shape [4, 7], e.g. a batch of 4 videos of
>>> # 3D frames, with 7 frames per video.
>>> input_shape = (4, 7, 28, 28, 28, 1)
>>> x = tf.random.normal(input_shape)
>>> y = tf.keras.layers.Conv3D(
... 2, 3, activation='relu', input_shape=input_shape[2:])(x)
>>> print(y.shape)
(4, 7, 26, 26, 26, 2)
Args:
filters: Integer, the dimensionality of the output space (i.e. the number
of output filters in the convolution).
kernel_size: An integer or tuple/list of 3 integers, specifying the depth,
height and width of the 3D convolution window. Can be a single integer
to specify the same value for all spatial dimensions.
strides: An integer or tuple/list of 3 integers, specifying the strides of
the convolution along each spatial dimension. Can be a single integer to
specify the same value for all spatial dimensions. Specifying any stride
value != 1 is incompatible with specifying any `dilation_rate` value !=
1.
padding: one of `"valid"` or `"same"` (case-insensitive).
`"valid"` means no padding. `"same"` results in padding with zeros
evenly to the left/right or up/down of the input such that output has
the same height/width dimension as the input.
data_format: A string, one of `channels_last` (default) or
`channels_first`. The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape `batch_shape +
(spatial_dim1, spatial_dim2, spatial_dim3, channels)` while
`channels_first` corresponds to inputs with shape `batch_shape +
(channels, spatial_dim1, spatial_dim2, spatial_dim3)`. It defaults to
the `image_data_format` value found in your Keras config file at
`~/.keras/keras.json`. If you never set it, then it will be
"channels_last". Note that the `channels_first` format is currently not
supported by TensorFlow on CPU.
dilation_rate: an integer or tuple/list of 3 integers, specifying the
dilation rate to use for dilated convolution. Can be a single integer to
specify the same value for all spatial dimensions. Currently, specifying
any `dilation_rate` value != 1 is incompatible with specifying any
stride value != 1.
groups: A positive integer specifying the number of groups in which the
input is split along the channel axis. Each group is convolved
separately with `filters / groups` filters. The output is the
concatenation of all the `groups` results along the channel axis. Input
channels and `filters` must both be divisible by `groups`.
activation: Activation function to use. If you don't specify anything, no
activation is applied (see `keras.activations`).
use_bias: Boolean, whether the layer uses a bias vector.
kernel_initializer: Initializer for the `kernel` weights matrix (see
`keras.initializers`). Defaults to 'glorot_uniform'.
bias_initializer: Initializer for the bias vector (see
`keras.initializers`). Defaults to 'zeros'.
kernel_regularizer: Regularizer function applied to the `kernel` weights
matrix (see `keras.regularizers`).
bias_regularizer: Regularizer function applied to the bias vector (see
`keras.regularizers`).
activity_regularizer: Regularizer function applied to the output of the
layer (its "activation") (see `keras.regularizers`).
kernel_constraint: Constraint function applied to the kernel matrix (see
`keras.constraints`).
bias_constraint: Constraint function applied to the bias vector (see
`keras.constraints`).
Input shape:
5+D tensor with shape: `batch_shape + (channels, conv_dim1, conv_dim2,
conv_dim3)` if data_format='channels_first'
or 5+D tensor with shape: `batch_shape + (conv_dim1, conv_dim2, conv_dim3,
channels)` if data_format='channels_last'.
Output shape:
5+D tensor with shape: `batch_shape + (filters, new_conv_dim1,
new_conv_dim2, new_conv_dim3)` if data_format='channels_first'
or 5+D tensor with shape: `batch_shape + (new_conv_dim1, new_conv_dim2,
new_conv_dim3, filters)` if data_format='channels_last'.
`new_conv_dim1`, `new_conv_dim2` and `new_conv_dim3` values might have
changed due to padding.
Returns:
A tensor of rank 5+ representing
`activation(conv3d(inputs, kernel) + bias)`.
Raises:
ValueError: if `padding` is "causal".
ValueError: when both `strides > 1` and `dilation_rate > 1`.
"""
@utils.allow_initializer_layout
def __init__(
self,
filters,
kernel_size,
strides=(1, 1, 1),
padding="valid",
data_format=None,
dilation_rate=(1, 1, 1),
groups=1,
activation=None,
use_bias=True,
kernel_initializer="glorot_uniform",
bias_initializer="zeros",
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs
):
super().__init__(
rank=3,
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding=padding,
data_format=data_format,
dilation_rate=dilation_rate,
groups=groups,
activation=activations.get(activation),
use_bias=use_bias,
kernel_initializer=initializers.get(kernel_initializer),
bias_initializer=initializers.get(bias_initializer),
kernel_regularizer=regularizers.get(kernel_regularizer),
bias_regularizer=regularizers.get(bias_regularizer),
activity_regularizer=regularizers.get(activity_regularizer),
kernel_constraint=constraints.get(kernel_constraint),
bias_constraint=constraints.get(bias_constraint),
**kwargs
)
# Alias
Convolution3D = Conv3D