188 lines
8.0 KiB
Python
188 lines
8.0 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""Keras 3D convolution layer."""
|
||
|
|
||
|
|
||
|
from keras import activations
|
||
|
from keras import constraints
|
||
|
from keras import initializers
|
||
|
from keras import regularizers
|
||
|
from keras.dtensor import utils
|
||
|
from keras.layers.convolutional.base_conv import Conv
|
||
|
|
||
|
# isort: off
|
||
|
from tensorflow.python.util.tf_export import keras_export
|
||
|
|
||
|
|
||
|
@keras_export("keras.layers.Conv3D", "keras.layers.Convolution3D")
|
||
|
class Conv3D(Conv):
|
||
|
"""3D convolution layer (e.g. spatial convolution over volumes).
|
||
|
|
||
|
This layer creates a convolution kernel that is convolved
|
||
|
with the layer input to produce a tensor of
|
||
|
outputs. If `use_bias` is True,
|
||
|
a bias vector is created and added to the outputs. Finally, if
|
||
|
`activation` is not `None`, it is applied to the outputs as well.
|
||
|
|
||
|
When using this layer as the first layer in a model,
|
||
|
provide the keyword argument `input_shape`
|
||
|
(tuple of integers or `None`, does not include the sample axis),
|
||
|
e.g. `input_shape=(128, 128, 128, 1)` for 128x128x128 volumes
|
||
|
with a single channel,
|
||
|
in `data_format="channels_last"`.
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
>>> # The inputs are 28x28x28 volumes with a single channel, and the
|
||
|
>>> # batch size is 4
|
||
|
>>> input_shape =(4, 28, 28, 28, 1)
|
||
|
>>> x = tf.random.normal(input_shape)
|
||
|
>>> y = tf.keras.layers.Conv3D(
|
||
|
... 2, 3, activation='relu', input_shape=input_shape[1:])(x)
|
||
|
>>> print(y.shape)
|
||
|
(4, 26, 26, 26, 2)
|
||
|
|
||
|
>>> # With extended batch shape [4, 7], e.g. a batch of 4 videos of
|
||
|
>>> # 3D frames, with 7 frames per video.
|
||
|
>>> input_shape = (4, 7, 28, 28, 28, 1)
|
||
|
>>> x = tf.random.normal(input_shape)
|
||
|
>>> y = tf.keras.layers.Conv3D(
|
||
|
... 2, 3, activation='relu', input_shape=input_shape[2:])(x)
|
||
|
>>> print(y.shape)
|
||
|
(4, 7, 26, 26, 26, 2)
|
||
|
|
||
|
Args:
|
||
|
filters: Integer, the dimensionality of the output space (i.e. the number
|
||
|
of output filters in the convolution).
|
||
|
kernel_size: An integer or tuple/list of 3 integers, specifying the depth,
|
||
|
height and width of the 3D convolution window. Can be a single integer
|
||
|
to specify the same value for all spatial dimensions.
|
||
|
strides: An integer or tuple/list of 3 integers, specifying the strides of
|
||
|
the convolution along each spatial dimension. Can be a single integer to
|
||
|
specify the same value for all spatial dimensions. Specifying any stride
|
||
|
value != 1 is incompatible with specifying any `dilation_rate` value !=
|
||
|
1.
|
||
|
padding: one of `"valid"` or `"same"` (case-insensitive).
|
||
|
`"valid"` means no padding. `"same"` results in padding with zeros
|
||
|
evenly to the left/right or up/down of the input such that output has
|
||
|
the same height/width dimension as the input.
|
||
|
data_format: A string, one of `channels_last` (default) or
|
||
|
`channels_first`. The ordering of the dimensions in the inputs.
|
||
|
`channels_last` corresponds to inputs with shape `batch_shape +
|
||
|
(spatial_dim1, spatial_dim2, spatial_dim3, channels)` while
|
||
|
`channels_first` corresponds to inputs with shape `batch_shape +
|
||
|
(channels, spatial_dim1, spatial_dim2, spatial_dim3)`. It defaults to
|
||
|
the `image_data_format` value found in your Keras config file at
|
||
|
`~/.keras/keras.json`. If you never set it, then it will be
|
||
|
"channels_last". Note that the `channels_first` format is currently not
|
||
|
supported by TensorFlow on CPU.
|
||
|
dilation_rate: an integer or tuple/list of 3 integers, specifying the
|
||
|
dilation rate to use for dilated convolution. Can be a single integer to
|
||
|
specify the same value for all spatial dimensions. Currently, specifying
|
||
|
any `dilation_rate` value != 1 is incompatible with specifying any
|
||
|
stride value != 1.
|
||
|
groups: A positive integer specifying the number of groups in which the
|
||
|
input is split along the channel axis. Each group is convolved
|
||
|
separately with `filters / groups` filters. The output is the
|
||
|
concatenation of all the `groups` results along the channel axis. Input
|
||
|
channels and `filters` must both be divisible by `groups`.
|
||
|
activation: Activation function to use. If you don't specify anything, no
|
||
|
activation is applied (see `keras.activations`).
|
||
|
use_bias: Boolean, whether the layer uses a bias vector.
|
||
|
kernel_initializer: Initializer for the `kernel` weights matrix (see
|
||
|
`keras.initializers`). Defaults to 'glorot_uniform'.
|
||
|
bias_initializer: Initializer for the bias vector (see
|
||
|
`keras.initializers`). Defaults to 'zeros'.
|
||
|
kernel_regularizer: Regularizer function applied to the `kernel` weights
|
||
|
matrix (see `keras.regularizers`).
|
||
|
bias_regularizer: Regularizer function applied to the bias vector (see
|
||
|
`keras.regularizers`).
|
||
|
activity_regularizer: Regularizer function applied to the output of the
|
||
|
layer (its "activation") (see `keras.regularizers`).
|
||
|
kernel_constraint: Constraint function applied to the kernel matrix (see
|
||
|
`keras.constraints`).
|
||
|
bias_constraint: Constraint function applied to the bias vector (see
|
||
|
`keras.constraints`).
|
||
|
|
||
|
Input shape:
|
||
|
5+D tensor with shape: `batch_shape + (channels, conv_dim1, conv_dim2,
|
||
|
conv_dim3)` if data_format='channels_first'
|
||
|
or 5+D tensor with shape: `batch_shape + (conv_dim1, conv_dim2, conv_dim3,
|
||
|
channels)` if data_format='channels_last'.
|
||
|
|
||
|
Output shape:
|
||
|
5+D tensor with shape: `batch_shape + (filters, new_conv_dim1,
|
||
|
new_conv_dim2, new_conv_dim3)` if data_format='channels_first'
|
||
|
or 5+D tensor with shape: `batch_shape + (new_conv_dim1, new_conv_dim2,
|
||
|
new_conv_dim3, filters)` if data_format='channels_last'.
|
||
|
`new_conv_dim1`, `new_conv_dim2` and `new_conv_dim3` values might have
|
||
|
changed due to padding.
|
||
|
|
||
|
Returns:
|
||
|
A tensor of rank 5+ representing
|
||
|
`activation(conv3d(inputs, kernel) + bias)`.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if `padding` is "causal".
|
||
|
ValueError: when both `strides > 1` and `dilation_rate > 1`.
|
||
|
"""
|
||
|
|
||
|
@utils.allow_initializer_layout
|
||
|
def __init__(
|
||
|
self,
|
||
|
filters,
|
||
|
kernel_size,
|
||
|
strides=(1, 1, 1),
|
||
|
padding="valid",
|
||
|
data_format=None,
|
||
|
dilation_rate=(1, 1, 1),
|
||
|
groups=1,
|
||
|
activation=None,
|
||
|
use_bias=True,
|
||
|
kernel_initializer="glorot_uniform",
|
||
|
bias_initializer="zeros",
|
||
|
kernel_regularizer=None,
|
||
|
bias_regularizer=None,
|
||
|
activity_regularizer=None,
|
||
|
kernel_constraint=None,
|
||
|
bias_constraint=None,
|
||
|
**kwargs
|
||
|
):
|
||
|
super().__init__(
|
||
|
rank=3,
|
||
|
filters=filters,
|
||
|
kernel_size=kernel_size,
|
||
|
strides=strides,
|
||
|
padding=padding,
|
||
|
data_format=data_format,
|
||
|
dilation_rate=dilation_rate,
|
||
|
groups=groups,
|
||
|
activation=activations.get(activation),
|
||
|
use_bias=use_bias,
|
||
|
kernel_initializer=initializers.get(kernel_initializer),
|
||
|
bias_initializer=initializers.get(bias_initializer),
|
||
|
kernel_regularizer=regularizers.get(kernel_regularizer),
|
||
|
bias_regularizer=regularizers.get(bias_regularizer),
|
||
|
activity_regularizer=regularizers.get(activity_regularizer),
|
||
|
kernel_constraint=constraints.get(kernel_constraint),
|
||
|
bias_constraint=constraints.get(bias_constraint),
|
||
|
**kwargs
|
||
|
)
|
||
|
|
||
|
|
||
|
# Alias
|
||
|
|
||
|
Convolution3D = Conv3D
|