Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/layers/merging/multiply.py

85 lines
2.8 KiB
Python
Raw Normal View History

2023-06-19 00:49:18 +02:00
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Layer that multiplies (element-wise) several inputs."""
from keras.layers.merging.base_merge import _Merge
# isort: off
from tensorflow.python.util.tf_export import keras_export
@keras_export("keras.layers.Multiply")
class Multiply(_Merge):
"""Layer that multiplies (element-wise) a list of inputs.
It takes as input a list of tensors, all of the same shape, and returns
a single tensor (also of the same shape).
>>> tf.keras.layers.Multiply()([np.arange(5).reshape(5, 1),
... np.arange(5, 10).reshape(5, 1)])
<tf.Tensor: shape=(5, 1), dtype=int64, numpy=
array([[ 0],
[ 6],
[14],
[24],
[36]])>
>>> x1 = tf.keras.layers.Dense(8)(np.arange(10).reshape(5, 2))
>>> x2 = tf.keras.layers.Dense(8)(np.arange(10, 20).reshape(5, 2))
>>> multiplied = tf.keras.layers.Multiply()([x1, x2])
>>> multiplied.shape
TensorShape([5, 8])
"""
def _merge_function(self, inputs):
output = inputs[0]
for i in range(1, len(inputs)):
output = output * inputs[i]
return output
@keras_export("keras.layers.multiply")
def multiply(inputs, **kwargs):
"""Functional interface to the `Multiply` layer.
Example:
>>> x1 = np.arange(3.0)
>>> x2 = np.arange(3.0)
>>> tf.keras.layers.multiply([x1, x2])
<tf.Tensor: shape=(3,), dtype=float32, numpy=array([0., 1., 4.], ...)>
Usage in a functional model:
>>> input1 = tf.keras.layers.Input(shape=(16,))
>>> x1 = tf.keras.layers.Dense(
... 8, activation='relu')(input1) #shape=(None, 8)
>>> input2 = tf.keras.layers.Input(shape=(32,))
>>> x2 = tf.keras.layers.Dense(
... 8, activation='relu')(input2) #shape=(None, 8)
>>> out = tf.keras.layers.multiply([x1,x2]) #shape=(None, 8)
>>> out = tf.keras.layers.Dense(4)(out)
>>> model = tf.keras.models.Model(inputs=[input1, input2], outputs=out)
Args:
inputs: A list of input tensors.
**kwargs: Standard layer keyword arguments.
Returns:
A tensor, the element-wise product of the inputs.
"""
return Multiply(**kwargs)(inputs)