85 lines
2.8 KiB
Python
85 lines
2.8 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""Layer that multiplies (element-wise) several inputs."""
|
||
|
|
||
|
|
||
|
from keras.layers.merging.base_merge import _Merge
|
||
|
|
||
|
# isort: off
|
||
|
from tensorflow.python.util.tf_export import keras_export
|
||
|
|
||
|
|
||
|
@keras_export("keras.layers.Multiply")
|
||
|
class Multiply(_Merge):
|
||
|
"""Layer that multiplies (element-wise) a list of inputs.
|
||
|
|
||
|
It takes as input a list of tensors, all of the same shape, and returns
|
||
|
a single tensor (also of the same shape).
|
||
|
|
||
|
>>> tf.keras.layers.Multiply()([np.arange(5).reshape(5, 1),
|
||
|
... np.arange(5, 10).reshape(5, 1)])
|
||
|
<tf.Tensor: shape=(5, 1), dtype=int64, numpy=
|
||
|
array([[ 0],
|
||
|
[ 6],
|
||
|
[14],
|
||
|
[24],
|
||
|
[36]])>
|
||
|
|
||
|
>>> x1 = tf.keras.layers.Dense(8)(np.arange(10).reshape(5, 2))
|
||
|
>>> x2 = tf.keras.layers.Dense(8)(np.arange(10, 20).reshape(5, 2))
|
||
|
>>> multiplied = tf.keras.layers.Multiply()([x1, x2])
|
||
|
>>> multiplied.shape
|
||
|
TensorShape([5, 8])
|
||
|
"""
|
||
|
|
||
|
def _merge_function(self, inputs):
|
||
|
output = inputs[0]
|
||
|
for i in range(1, len(inputs)):
|
||
|
output = output * inputs[i]
|
||
|
return output
|
||
|
|
||
|
|
||
|
@keras_export("keras.layers.multiply")
|
||
|
def multiply(inputs, **kwargs):
|
||
|
"""Functional interface to the `Multiply` layer.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> x1 = np.arange(3.0)
|
||
|
>>> x2 = np.arange(3.0)
|
||
|
>>> tf.keras.layers.multiply([x1, x2])
|
||
|
<tf.Tensor: shape=(3,), dtype=float32, numpy=array([0., 1., 4.], ...)>
|
||
|
|
||
|
Usage in a functional model:
|
||
|
|
||
|
>>> input1 = tf.keras.layers.Input(shape=(16,))
|
||
|
>>> x1 = tf.keras.layers.Dense(
|
||
|
... 8, activation='relu')(input1) #shape=(None, 8)
|
||
|
>>> input2 = tf.keras.layers.Input(shape=(32,))
|
||
|
>>> x2 = tf.keras.layers.Dense(
|
||
|
... 8, activation='relu')(input2) #shape=(None, 8)
|
||
|
>>> out = tf.keras.layers.multiply([x1,x2]) #shape=(None, 8)
|
||
|
>>> out = tf.keras.layers.Dense(4)(out)
|
||
|
>>> model = tf.keras.models.Model(inputs=[input1, input2], outputs=out)
|
||
|
|
||
|
Args:
|
||
|
inputs: A list of input tensors.
|
||
|
**kwargs: Standard layer keyword arguments.
|
||
|
|
||
|
Returns:
|
||
|
A tensor, the element-wise product of the inputs.
|
||
|
"""
|
||
|
return Multiply(**kwargs)(inputs)
|