510 lines
19 KiB
Python
510 lines
19 KiB
Python
|
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""Fully connected RNN layer."""
|
||
|
|
||
|
|
||
|
import tensorflow.compat.v2 as tf
|
||
|
|
||
|
from keras import activations
|
||
|
from keras import backend
|
||
|
from keras import constraints
|
||
|
from keras import initializers
|
||
|
from keras import regularizers
|
||
|
from keras.engine import base_layer
|
||
|
from keras.engine.input_spec import InputSpec
|
||
|
from keras.layers.rnn import rnn_utils
|
||
|
from keras.layers.rnn.base_rnn import RNN
|
||
|
from keras.layers.rnn.dropout_rnn_cell_mixin import DropoutRNNCellMixin
|
||
|
from keras.utils import tf_utils
|
||
|
|
||
|
# isort: off
|
||
|
from tensorflow.python.platform import tf_logging as logging
|
||
|
from tensorflow.python.util.tf_export import keras_export
|
||
|
|
||
|
|
||
|
@keras_export("keras.layers.SimpleRNNCell")
|
||
|
class SimpleRNNCell(DropoutRNNCellMixin, base_layer.BaseRandomLayer):
|
||
|
"""Cell class for SimpleRNN.
|
||
|
|
||
|
See [the Keras RNN API guide](https://www.tensorflow.org/guide/keras/rnn)
|
||
|
for details about the usage of RNN API.
|
||
|
|
||
|
This class processes one step within the whole time sequence input, whereas
|
||
|
`tf.keras.layer.SimpleRNN` processes the whole sequence.
|
||
|
|
||
|
Args:
|
||
|
units: Positive integer, dimensionality of the output space.
|
||
|
activation: Activation function to use.
|
||
|
Default: hyperbolic tangent (`tanh`).
|
||
|
If you pass `None`, no activation is applied
|
||
|
(ie. "linear" activation: `a(x) = x`).
|
||
|
use_bias: Boolean, (default `True`), whether the layer uses a bias vector.
|
||
|
kernel_initializer: Initializer for the `kernel` weights matrix,
|
||
|
used for the linear transformation of the inputs. Default:
|
||
|
`glorot_uniform`.
|
||
|
recurrent_initializer: Initializer for the `recurrent_kernel`
|
||
|
weights matrix, used for the linear transformation of the recurrent
|
||
|
state. Default: `orthogonal`.
|
||
|
bias_initializer: Initializer for the bias vector. Default: `zeros`.
|
||
|
kernel_regularizer: Regularizer function applied to the `kernel` weights
|
||
|
matrix. Default: `None`.
|
||
|
recurrent_regularizer: Regularizer function applied to the
|
||
|
`recurrent_kernel` weights matrix. Default: `None`.
|
||
|
bias_regularizer: Regularizer function applied to the bias vector.
|
||
|
Default: `None`.
|
||
|
kernel_constraint: Constraint function applied to the `kernel` weights
|
||
|
matrix. Default: `None`.
|
||
|
recurrent_constraint: Constraint function applied to the
|
||
|
`recurrent_kernel` weights matrix. Default: `None`.
|
||
|
bias_constraint: Constraint function applied to the bias vector. Default:
|
||
|
`None`.
|
||
|
dropout: Float between 0 and 1. Fraction of the units to drop for the
|
||
|
linear transformation of the inputs. Default: 0.
|
||
|
recurrent_dropout: Float between 0 and 1. Fraction of the units to drop
|
||
|
for the linear transformation of the recurrent state. Default: 0.
|
||
|
|
||
|
Call arguments:
|
||
|
inputs: A 2D tensor, with shape of `[batch, feature]`.
|
||
|
states: A 2D tensor with shape of `[batch, units]`, which is the state
|
||
|
from the previous time step. For timestep 0, the initial state provided
|
||
|
by user will be feed to cell.
|
||
|
training: Python boolean indicating whether the layer should behave in
|
||
|
training mode or in inference mode. Only relevant when `dropout` or
|
||
|
`recurrent_dropout` is used.
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
inputs = np.random.random([32, 10, 8]).astype(np.float32)
|
||
|
rnn = tf.keras.layers.RNN(tf.keras.layers.SimpleRNNCell(4))
|
||
|
|
||
|
output = rnn(inputs) # The output has shape `[32, 4]`.
|
||
|
|
||
|
rnn = tf.keras.layers.RNN(
|
||
|
tf.keras.layers.SimpleRNNCell(4),
|
||
|
return_sequences=True,
|
||
|
return_state=True)
|
||
|
|
||
|
# whole_sequence_output has shape `[32, 10, 4]`.
|
||
|
# final_state has shape `[32, 4]`.
|
||
|
whole_sequence_output, final_state = rnn(inputs)
|
||
|
```
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
units,
|
||
|
activation="tanh",
|
||
|
use_bias=True,
|
||
|
kernel_initializer="glorot_uniform",
|
||
|
recurrent_initializer="orthogonal",
|
||
|
bias_initializer="zeros",
|
||
|
kernel_regularizer=None,
|
||
|
recurrent_regularizer=None,
|
||
|
bias_regularizer=None,
|
||
|
kernel_constraint=None,
|
||
|
recurrent_constraint=None,
|
||
|
bias_constraint=None,
|
||
|
dropout=0.0,
|
||
|
recurrent_dropout=0.0,
|
||
|
**kwargs,
|
||
|
):
|
||
|
if units <= 0:
|
||
|
raise ValueError(
|
||
|
"Received an invalid value for argument `units`, "
|
||
|
f"expected a positive integer, got {units}."
|
||
|
)
|
||
|
# By default use cached variable under v2 mode, see b/143699808.
|
||
|
if tf.compat.v1.executing_eagerly_outside_functions():
|
||
|
self._enable_caching_device = kwargs.pop(
|
||
|
"enable_caching_device", True
|
||
|
)
|
||
|
else:
|
||
|
self._enable_caching_device = kwargs.pop(
|
||
|
"enable_caching_device", False
|
||
|
)
|
||
|
super().__init__(**kwargs)
|
||
|
self.units = units
|
||
|
self.activation = activations.get(activation)
|
||
|
self.use_bias = use_bias
|
||
|
|
||
|
self.kernel_initializer = initializers.get(kernel_initializer)
|
||
|
self.recurrent_initializer = initializers.get(recurrent_initializer)
|
||
|
self.bias_initializer = initializers.get(bias_initializer)
|
||
|
|
||
|
self.kernel_regularizer = regularizers.get(kernel_regularizer)
|
||
|
self.recurrent_regularizer = regularizers.get(recurrent_regularizer)
|
||
|
self.bias_regularizer = regularizers.get(bias_regularizer)
|
||
|
|
||
|
self.kernel_constraint = constraints.get(kernel_constraint)
|
||
|
self.recurrent_constraint = constraints.get(recurrent_constraint)
|
||
|
self.bias_constraint = constraints.get(bias_constraint)
|
||
|
|
||
|
self.dropout = min(1.0, max(0.0, dropout))
|
||
|
self.recurrent_dropout = min(1.0, max(0.0, recurrent_dropout))
|
||
|
self.state_size = self.units
|
||
|
self.output_size = self.units
|
||
|
|
||
|
@tf_utils.shape_type_conversion
|
||
|
def build(self, input_shape):
|
||
|
super().build(input_shape)
|
||
|
default_caching_device = rnn_utils.caching_device(self)
|
||
|
self.kernel = self.add_weight(
|
||
|
shape=(input_shape[-1], self.units),
|
||
|
name="kernel",
|
||
|
initializer=self.kernel_initializer,
|
||
|
regularizer=self.kernel_regularizer,
|
||
|
constraint=self.kernel_constraint,
|
||
|
caching_device=default_caching_device,
|
||
|
)
|
||
|
self.recurrent_kernel = self.add_weight(
|
||
|
shape=(self.units, self.units),
|
||
|
name="recurrent_kernel",
|
||
|
initializer=self.recurrent_initializer,
|
||
|
regularizer=self.recurrent_regularizer,
|
||
|
constraint=self.recurrent_constraint,
|
||
|
caching_device=default_caching_device,
|
||
|
)
|
||
|
if self.use_bias:
|
||
|
self.bias = self.add_weight(
|
||
|
shape=(self.units,),
|
||
|
name="bias",
|
||
|
initializer=self.bias_initializer,
|
||
|
regularizer=self.bias_regularizer,
|
||
|
constraint=self.bias_constraint,
|
||
|
caching_device=default_caching_device,
|
||
|
)
|
||
|
else:
|
||
|
self.bias = None
|
||
|
self.built = True
|
||
|
|
||
|
def call(self, inputs, states, training=None):
|
||
|
prev_output = states[0] if tf.nest.is_nested(states) else states
|
||
|
dp_mask = self.get_dropout_mask_for_cell(inputs, training)
|
||
|
rec_dp_mask = self.get_recurrent_dropout_mask_for_cell(
|
||
|
prev_output, training
|
||
|
)
|
||
|
|
||
|
if dp_mask is not None:
|
||
|
h = backend.dot(inputs * dp_mask, self.kernel)
|
||
|
else:
|
||
|
h = backend.dot(inputs, self.kernel)
|
||
|
if self.bias is not None:
|
||
|
h = backend.bias_add(h, self.bias)
|
||
|
|
||
|
if rec_dp_mask is not None:
|
||
|
prev_output = prev_output * rec_dp_mask
|
||
|
output = h + backend.dot(prev_output, self.recurrent_kernel)
|
||
|
if self.activation is not None:
|
||
|
output = self.activation(output)
|
||
|
|
||
|
new_state = [output] if tf.nest.is_nested(states) else output
|
||
|
return output, new_state
|
||
|
|
||
|
def get_initial_state(self, inputs=None, batch_size=None, dtype=None):
|
||
|
return rnn_utils.generate_zero_filled_state_for_cell(
|
||
|
self, inputs, batch_size, dtype
|
||
|
)
|
||
|
|
||
|
def get_config(self):
|
||
|
config = {
|
||
|
"units": self.units,
|
||
|
"activation": activations.serialize(self.activation),
|
||
|
"use_bias": self.use_bias,
|
||
|
"kernel_initializer": initializers.serialize(
|
||
|
self.kernel_initializer
|
||
|
),
|
||
|
"recurrent_initializer": initializers.serialize(
|
||
|
self.recurrent_initializer
|
||
|
),
|
||
|
"bias_initializer": initializers.serialize(self.bias_initializer),
|
||
|
"kernel_regularizer": regularizers.serialize(
|
||
|
self.kernel_regularizer
|
||
|
),
|
||
|
"recurrent_regularizer": regularizers.serialize(
|
||
|
self.recurrent_regularizer
|
||
|
),
|
||
|
"bias_regularizer": regularizers.serialize(self.bias_regularizer),
|
||
|
"kernel_constraint": constraints.serialize(self.kernel_constraint),
|
||
|
"recurrent_constraint": constraints.serialize(
|
||
|
self.recurrent_constraint
|
||
|
),
|
||
|
"bias_constraint": constraints.serialize(self.bias_constraint),
|
||
|
"dropout": self.dropout,
|
||
|
"recurrent_dropout": self.recurrent_dropout,
|
||
|
}
|
||
|
config.update(rnn_utils.config_for_enable_caching_device(self))
|
||
|
base_config = super().get_config()
|
||
|
return dict(list(base_config.items()) + list(config.items()))
|
||
|
|
||
|
|
||
|
@keras_export("keras.layers.SimpleRNN")
|
||
|
class SimpleRNN(RNN):
|
||
|
"""Fully-connected RNN where the output is to be fed back to input.
|
||
|
|
||
|
See [the Keras RNN API guide](https://www.tensorflow.org/guide/keras/rnn)
|
||
|
for details about the usage of RNN API.
|
||
|
|
||
|
Args:
|
||
|
units: Positive integer, dimensionality of the output space.
|
||
|
activation: Activation function to use.
|
||
|
Default: hyperbolic tangent (`tanh`).
|
||
|
If you pass None, no activation is applied
|
||
|
(ie. "linear" activation: `a(x) = x`).
|
||
|
use_bias: Boolean, (default `True`), whether the layer uses a bias vector.
|
||
|
kernel_initializer: Initializer for the `kernel` weights matrix,
|
||
|
used for the linear transformation of the inputs. Default:
|
||
|
`glorot_uniform`.
|
||
|
recurrent_initializer: Initializer for the `recurrent_kernel`
|
||
|
weights matrix, used for the linear transformation of the recurrent
|
||
|
state. Default: `orthogonal`.
|
||
|
bias_initializer: Initializer for the bias vector. Default: `zeros`.
|
||
|
kernel_regularizer: Regularizer function applied to the `kernel` weights
|
||
|
matrix. Default: `None`.
|
||
|
recurrent_regularizer: Regularizer function applied to the
|
||
|
`recurrent_kernel` weights matrix. Default: `None`.
|
||
|
bias_regularizer: Regularizer function applied to the bias vector.
|
||
|
Default: `None`.
|
||
|
activity_regularizer: Regularizer function applied to the output of the
|
||
|
layer (its "activation"). Default: `None`.
|
||
|
kernel_constraint: Constraint function applied to the `kernel` weights
|
||
|
matrix. Default: `None`.
|
||
|
recurrent_constraint: Constraint function applied to the
|
||
|
`recurrent_kernel` weights matrix. Default: `None`.
|
||
|
bias_constraint: Constraint function applied to the bias vector. Default:
|
||
|
`None`.
|
||
|
dropout: Float between 0 and 1.
|
||
|
Fraction of the units to drop for the linear transformation of the
|
||
|
inputs. Default: 0.
|
||
|
recurrent_dropout: Float between 0 and 1.
|
||
|
Fraction of the units to drop for the linear transformation of the
|
||
|
recurrent state. Default: 0.
|
||
|
return_sequences: Boolean. Whether to return the last output
|
||
|
in the output sequence, or the full sequence. Default: `False`.
|
||
|
return_state: Boolean. Whether to return the last state
|
||
|
in addition to the output. Default: `False`
|
||
|
go_backwards: Boolean (default False).
|
||
|
If True, process the input sequence backwards and return the
|
||
|
reversed sequence.
|
||
|
stateful: Boolean (default False). If True, the last state
|
||
|
for each sample at index i in a batch will be used as initial
|
||
|
state for the sample of index i in the following batch.
|
||
|
unroll: Boolean (default False).
|
||
|
If True, the network will be unrolled,
|
||
|
else a symbolic loop will be used.
|
||
|
Unrolling can speed-up a RNN,
|
||
|
although it tends to be more memory-intensive.
|
||
|
Unrolling is only suitable for short sequences.
|
||
|
|
||
|
Call arguments:
|
||
|
inputs: A 3D tensor, with shape `[batch, timesteps, feature]`.
|
||
|
mask: Binary tensor of shape `[batch, timesteps]` indicating whether
|
||
|
a given timestep should be masked. An individual `True` entry indicates
|
||
|
that the corresponding timestep should be utilized, while a `False`
|
||
|
entry indicates that the corresponding timestep should be ignored.
|
||
|
training: Python boolean indicating whether the layer should behave in
|
||
|
training mode or in inference mode. This argument is passed to the cell
|
||
|
when calling it. This is only relevant if `dropout` or
|
||
|
`recurrent_dropout` is used.
|
||
|
initial_state: List of initial state tensors to be passed to the first
|
||
|
call of the cell.
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
inputs = np.random.random([32, 10, 8]).astype(np.float32)
|
||
|
simple_rnn = tf.keras.layers.SimpleRNN(4)
|
||
|
|
||
|
output = simple_rnn(inputs) # The output has shape `[32, 4]`.
|
||
|
|
||
|
simple_rnn = tf.keras.layers.SimpleRNN(
|
||
|
4, return_sequences=True, return_state=True)
|
||
|
|
||
|
# whole_sequence_output has shape `[32, 10, 4]`.
|
||
|
# final_state has shape `[32, 4]`.
|
||
|
whole_sequence_output, final_state = simple_rnn(inputs)
|
||
|
```
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
units,
|
||
|
activation="tanh",
|
||
|
use_bias=True,
|
||
|
kernel_initializer="glorot_uniform",
|
||
|
recurrent_initializer="orthogonal",
|
||
|
bias_initializer="zeros",
|
||
|
kernel_regularizer=None,
|
||
|
recurrent_regularizer=None,
|
||
|
bias_regularizer=None,
|
||
|
activity_regularizer=None,
|
||
|
kernel_constraint=None,
|
||
|
recurrent_constraint=None,
|
||
|
bias_constraint=None,
|
||
|
dropout=0.0,
|
||
|
recurrent_dropout=0.0,
|
||
|
return_sequences=False,
|
||
|
return_state=False,
|
||
|
go_backwards=False,
|
||
|
stateful=False,
|
||
|
unroll=False,
|
||
|
**kwargs,
|
||
|
):
|
||
|
if "implementation" in kwargs:
|
||
|
kwargs.pop("implementation")
|
||
|
logging.warning(
|
||
|
"The `implementation` argument "
|
||
|
"in `SimpleRNN` has been deprecated. "
|
||
|
"Please remove it from your layer call."
|
||
|
)
|
||
|
if "enable_caching_device" in kwargs:
|
||
|
cell_kwargs = {
|
||
|
"enable_caching_device": kwargs.pop("enable_caching_device")
|
||
|
}
|
||
|
else:
|
||
|
cell_kwargs = {}
|
||
|
cell = SimpleRNNCell(
|
||
|
units,
|
||
|
activation=activation,
|
||
|
use_bias=use_bias,
|
||
|
kernel_initializer=kernel_initializer,
|
||
|
recurrent_initializer=recurrent_initializer,
|
||
|
bias_initializer=bias_initializer,
|
||
|
kernel_regularizer=kernel_regularizer,
|
||
|
recurrent_regularizer=recurrent_regularizer,
|
||
|
bias_regularizer=bias_regularizer,
|
||
|
kernel_constraint=kernel_constraint,
|
||
|
recurrent_constraint=recurrent_constraint,
|
||
|
bias_constraint=bias_constraint,
|
||
|
dropout=dropout,
|
||
|
recurrent_dropout=recurrent_dropout,
|
||
|
dtype=kwargs.get("dtype"),
|
||
|
trainable=kwargs.get("trainable", True),
|
||
|
**cell_kwargs,
|
||
|
)
|
||
|
super().__init__(
|
||
|
cell,
|
||
|
return_sequences=return_sequences,
|
||
|
return_state=return_state,
|
||
|
go_backwards=go_backwards,
|
||
|
stateful=stateful,
|
||
|
unroll=unroll,
|
||
|
**kwargs,
|
||
|
)
|
||
|
self.activity_regularizer = regularizers.get(activity_regularizer)
|
||
|
self.input_spec = [InputSpec(ndim=3)]
|
||
|
|
||
|
def call(self, inputs, mask=None, training=None, initial_state=None):
|
||
|
return super().call(
|
||
|
inputs, mask=mask, training=training, initial_state=initial_state
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def units(self):
|
||
|
return self.cell.units
|
||
|
|
||
|
@property
|
||
|
def activation(self):
|
||
|
return self.cell.activation
|
||
|
|
||
|
@property
|
||
|
def use_bias(self):
|
||
|
return self.cell.use_bias
|
||
|
|
||
|
@property
|
||
|
def kernel_initializer(self):
|
||
|
return self.cell.kernel_initializer
|
||
|
|
||
|
@property
|
||
|
def recurrent_initializer(self):
|
||
|
return self.cell.recurrent_initializer
|
||
|
|
||
|
@property
|
||
|
def bias_initializer(self):
|
||
|
return self.cell.bias_initializer
|
||
|
|
||
|
@property
|
||
|
def kernel_regularizer(self):
|
||
|
return self.cell.kernel_regularizer
|
||
|
|
||
|
@property
|
||
|
def recurrent_regularizer(self):
|
||
|
return self.cell.recurrent_regularizer
|
||
|
|
||
|
@property
|
||
|
def bias_regularizer(self):
|
||
|
return self.cell.bias_regularizer
|
||
|
|
||
|
@property
|
||
|
def kernel_constraint(self):
|
||
|
return self.cell.kernel_constraint
|
||
|
|
||
|
@property
|
||
|
def recurrent_constraint(self):
|
||
|
return self.cell.recurrent_constraint
|
||
|
|
||
|
@property
|
||
|
def bias_constraint(self):
|
||
|
return self.cell.bias_constraint
|
||
|
|
||
|
@property
|
||
|
def dropout(self):
|
||
|
return self.cell.dropout
|
||
|
|
||
|
@property
|
||
|
def recurrent_dropout(self):
|
||
|
return self.cell.recurrent_dropout
|
||
|
|
||
|
def get_config(self):
|
||
|
config = {
|
||
|
"units": self.units,
|
||
|
"activation": activations.serialize(self.activation),
|
||
|
"use_bias": self.use_bias,
|
||
|
"kernel_initializer": initializers.serialize(
|
||
|
self.kernel_initializer
|
||
|
),
|
||
|
"recurrent_initializer": initializers.serialize(
|
||
|
self.recurrent_initializer
|
||
|
),
|
||
|
"bias_initializer": initializers.serialize(self.bias_initializer),
|
||
|
"kernel_regularizer": regularizers.serialize(
|
||
|
self.kernel_regularizer
|
||
|
),
|
||
|
"recurrent_regularizer": regularizers.serialize(
|
||
|
self.recurrent_regularizer
|
||
|
),
|
||
|
"bias_regularizer": regularizers.serialize(self.bias_regularizer),
|
||
|
"activity_regularizer": regularizers.serialize(
|
||
|
self.activity_regularizer
|
||
|
),
|
||
|
"kernel_constraint": constraints.serialize(self.kernel_constraint),
|
||
|
"recurrent_constraint": constraints.serialize(
|
||
|
self.recurrent_constraint
|
||
|
),
|
||
|
"bias_constraint": constraints.serialize(self.bias_constraint),
|
||
|
"dropout": self.dropout,
|
||
|
"recurrent_dropout": self.recurrent_dropout,
|
||
|
}
|
||
|
base_config = super().get_config()
|
||
|
config.update(rnn_utils.config_for_enable_caching_device(self.cell))
|
||
|
del base_config["cell"]
|
||
|
return dict(list(base_config.items()) + list(config.items()))
|
||
|
|
||
|
@classmethod
|
||
|
def from_config(cls, config):
|
||
|
if "implementation" in config:
|
||
|
config.pop("implementation")
|
||
|
return cls(**config)
|