Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/utils/np_utils.py

143 lines
4.7 KiB
Python
Raw Normal View History

2023-06-19 00:49:18 +02:00
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Numpy-related utilities."""
import numpy as np
# isort: off
from tensorflow.python.util.tf_export import keras_export
@keras_export("keras.utils.to_categorical")
def to_categorical(y, num_classes=None, dtype="float32"):
"""Converts a class vector (integers) to binary class matrix.
E.g. for use with `categorical_crossentropy`.
Args:
y: Array-like with class values to be converted into a matrix
(integers from 0 to `num_classes - 1`).
num_classes: Total number of classes. If `None`, this would be inferred
as `max(y) + 1`.
dtype: The data type expected by the input. Default: `'float32'`.
Returns:
A binary matrix representation of the input as a NumPy array. The class
axis is placed last.
Example:
>>> a = tf.keras.utils.to_categorical([0, 1, 2, 3], num_classes=4)
>>> print(a)
[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]]
>>> b = tf.constant([.9, .04, .03, .03,
... .3, .45, .15, .13,
... .04, .01, .94, .05,
... .12, .21, .5, .17],
... shape=[4, 4])
>>> loss = tf.keras.backend.categorical_crossentropy(a, b)
>>> print(np.around(loss, 5))
[0.10536 0.82807 0.1011 1.77196]
>>> loss = tf.keras.backend.categorical_crossentropy(a, a)
>>> print(np.around(loss, 5))
[0. 0. 0. 0.]
"""
y = np.array(y, dtype="int")
input_shape = y.shape
# Shrink the last dimension if the shape is (..., 1).
if input_shape and input_shape[-1] == 1 and len(input_shape) > 1:
input_shape = tuple(input_shape[:-1])
y = y.reshape(-1)
if not num_classes:
num_classes = np.max(y) + 1
n = y.shape[0]
categorical = np.zeros((n, num_classes), dtype=dtype)
categorical[np.arange(n), y] = 1
output_shape = input_shape + (num_classes,)
categorical = np.reshape(categorical, output_shape)
return categorical
@keras_export("keras.utils.to_ordinal")
def to_ordinal(y, num_classes=None, dtype="float32"):
"""Converts a class vector (integers) to an ordinal regression matrix.
This utility encodes class vector to ordinal regression/classification
matrix where each sample is indicated by a row and rank of that sample is
indicated by number of ones in that row.
Args:
y: Array-like with class values to be converted into a matrix
(integers from 0 to `num_classes - 1`).
num_classes: Total number of classes. If `None`, this would be inferred
as `max(y) + 1`.
dtype: The data type expected by the input. Default: `'float32'`.
Returns:
An ordinal regression matrix representation of the input as a NumPy
array. The class axis is placed last.
Example:
>>> a = tf.keras.utils.to_ordinal([0, 1, 2, 3], num_classes=4)
>>> print(a)
[[0. 0. 0.]
[1. 0. 0.]
[1. 1. 0.]
[1. 1. 1.]]
"""
y = np.array(y, dtype="int")
input_shape = y.shape
# Shrink the last dimension if the shape is (..., 1).
if input_shape and input_shape[-1] == 1 and len(input_shape) > 1:
input_shape = tuple(input_shape[:-1])
y = y.reshape(-1)
if not num_classes:
num_classes = np.max(y) + 1
n = y.shape[0]
range_values = np.arange(num_classes - 1)
range_values = np.tile(np.expand_dims(range_values, 0), [n, 1])
ordinal = np.zeros((n, num_classes - 1), dtype=dtype)
ordinal[range_values < np.expand_dims(y, -1)] = 1
output_shape = input_shape + (num_classes - 1,)
ordinal = np.reshape(ordinal, output_shape)
return ordinal
@keras_export("keras.utils.normalize")
def normalize(x, axis=-1, order=2):
"""Normalizes a Numpy array.
Args:
x: Numpy array to normalize.
axis: axis along which to normalize.
order: Normalization order (e.g. `order=2` for L2 norm).
Returns:
A normalized copy of the array.
"""
l2 = np.atleast_1d(np.linalg.norm(x, order, axis))
l2[l2 == 0] = 1
return x / np.expand_dims(l2, axis)