948 lines
30 KiB
Python
948 lines
30 KiB
Python
|
"""Functions to construct sparse matrices
|
||
|
"""
|
||
|
|
||
|
__docformat__ = "restructuredtext en"
|
||
|
|
||
|
__all__ = ['spdiags', 'eye', 'identity', 'kron', 'kronsum',
|
||
|
'hstack', 'vstack', 'bmat', 'rand', 'random', 'diags', 'block_diag']
|
||
|
|
||
|
import numbers
|
||
|
from functools import partial
|
||
|
import numpy as np
|
||
|
|
||
|
from scipy._lib._util import check_random_state, rng_integers
|
||
|
from ._sputils import upcast, get_index_dtype, isscalarlike
|
||
|
|
||
|
from ._sparsetools import csr_hstack
|
||
|
from ._csr import csr_matrix
|
||
|
from ._csc import csc_matrix
|
||
|
from ._bsr import bsr_matrix
|
||
|
from ._coo import coo_matrix
|
||
|
from ._dia import dia_matrix
|
||
|
|
||
|
from ._base import issparse
|
||
|
|
||
|
|
||
|
def spdiags(data, diags, m=None, n=None, format=None):
|
||
|
"""
|
||
|
Return a sparse matrix from diagonals.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : array_like
|
||
|
Matrix diagonals stored row-wise
|
||
|
diags : sequence of int or an int
|
||
|
Diagonals to set:
|
||
|
|
||
|
* k = 0 the main diagonal
|
||
|
* k > 0 the kth upper diagonal
|
||
|
* k < 0 the kth lower diagonal
|
||
|
m, n : int, tuple, optional
|
||
|
Shape of the result. If `n` is None and `m` is a given tuple,
|
||
|
the shape is this tuple. If omitted, the matrix is square and
|
||
|
its shape is len(data[0]).
|
||
|
format : str, optional
|
||
|
Format of the result. By default (format=None) an appropriate sparse
|
||
|
matrix format is returned. This choice is subject to change.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
diags : more convenient form of this function
|
||
|
dia_matrix : the sparse DIAgonal format.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.sparse import spdiags
|
||
|
>>> data = np.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]])
|
||
|
>>> diags = np.array([0, -1, 2])
|
||
|
>>> spdiags(data, diags, 4, 4).toarray()
|
||
|
array([[1, 0, 3, 0],
|
||
|
[1, 2, 0, 4],
|
||
|
[0, 2, 3, 0],
|
||
|
[0, 0, 3, 4]])
|
||
|
|
||
|
"""
|
||
|
if m is None and n is None:
|
||
|
m = n = len(data[0])
|
||
|
elif n is None:
|
||
|
m, n = m
|
||
|
return dia_matrix((data, diags), shape=(m, n)).asformat(format)
|
||
|
|
||
|
|
||
|
def diags(diagonals, offsets=0, shape=None, format=None, dtype=None):
|
||
|
"""
|
||
|
Construct a sparse matrix from diagonals.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
diagonals : sequence of array_like
|
||
|
Sequence of arrays containing the matrix diagonals,
|
||
|
corresponding to `offsets`.
|
||
|
offsets : sequence of int or an int, optional
|
||
|
Diagonals to set:
|
||
|
- k = 0 the main diagonal (default)
|
||
|
- k > 0 the kth upper diagonal
|
||
|
- k < 0 the kth lower diagonal
|
||
|
shape : tuple of int, optional
|
||
|
Shape of the result. If omitted, a square matrix large enough
|
||
|
to contain the diagonals is returned.
|
||
|
format : {"dia", "csr", "csc", "lil", ...}, optional
|
||
|
Matrix format of the result. By default (format=None) an
|
||
|
appropriate sparse matrix format is returned. This choice is
|
||
|
subject to change.
|
||
|
dtype : dtype, optional
|
||
|
Data type of the matrix.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
spdiags : construct matrix from diagonals
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This function differs from `spdiags` in the way it handles
|
||
|
off-diagonals.
|
||
|
|
||
|
The result from `diags` is the sparse equivalent of::
|
||
|
|
||
|
np.diag(diagonals[0], offsets[0])
|
||
|
+ ...
|
||
|
+ np.diag(diagonals[k], offsets[k])
|
||
|
|
||
|
Repeated diagonal offsets are disallowed.
|
||
|
|
||
|
.. versionadded:: 0.11
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.sparse import diags
|
||
|
>>> diagonals = [[1, 2, 3, 4], [1, 2, 3], [1, 2]]
|
||
|
>>> diags(diagonals, [0, -1, 2]).toarray()
|
||
|
array([[1, 0, 1, 0],
|
||
|
[1, 2, 0, 2],
|
||
|
[0, 2, 3, 0],
|
||
|
[0, 0, 3, 4]])
|
||
|
|
||
|
Broadcasting of scalars is supported (but shape needs to be
|
||
|
specified):
|
||
|
|
||
|
>>> diags([1, -2, 1], [-1, 0, 1], shape=(4, 4)).toarray()
|
||
|
array([[-2., 1., 0., 0.],
|
||
|
[ 1., -2., 1., 0.],
|
||
|
[ 0., 1., -2., 1.],
|
||
|
[ 0., 0., 1., -2.]])
|
||
|
|
||
|
|
||
|
If only one diagonal is wanted (as in `numpy.diag`), the following
|
||
|
works as well:
|
||
|
|
||
|
>>> diags([1, 2, 3], 1).toarray()
|
||
|
array([[ 0., 1., 0., 0.],
|
||
|
[ 0., 0., 2., 0.],
|
||
|
[ 0., 0., 0., 3.],
|
||
|
[ 0., 0., 0., 0.]])
|
||
|
"""
|
||
|
# if offsets is not a sequence, assume that there's only one diagonal
|
||
|
if isscalarlike(offsets):
|
||
|
# now check that there's actually only one diagonal
|
||
|
if len(diagonals) == 0 or isscalarlike(diagonals[0]):
|
||
|
diagonals = [np.atleast_1d(diagonals)]
|
||
|
else:
|
||
|
raise ValueError("Different number of diagonals and offsets.")
|
||
|
else:
|
||
|
diagonals = list(map(np.atleast_1d, diagonals))
|
||
|
|
||
|
offsets = np.atleast_1d(offsets)
|
||
|
|
||
|
# Basic check
|
||
|
if len(diagonals) != len(offsets):
|
||
|
raise ValueError("Different number of diagonals and offsets.")
|
||
|
|
||
|
# Determine shape, if omitted
|
||
|
if shape is None:
|
||
|
m = len(diagonals[0]) + abs(int(offsets[0]))
|
||
|
shape = (m, m)
|
||
|
|
||
|
# Determine data type, if omitted
|
||
|
if dtype is None:
|
||
|
dtype = np.common_type(*diagonals)
|
||
|
|
||
|
# Construct data array
|
||
|
m, n = shape
|
||
|
|
||
|
M = max([min(m + offset, n - offset) + max(0, offset)
|
||
|
for offset in offsets])
|
||
|
M = max(0, M)
|
||
|
data_arr = np.zeros((len(offsets), M), dtype=dtype)
|
||
|
|
||
|
K = min(m, n)
|
||
|
|
||
|
for j, diagonal in enumerate(diagonals):
|
||
|
offset = offsets[j]
|
||
|
k = max(0, offset)
|
||
|
length = min(m + offset, n - offset, K)
|
||
|
if length < 0:
|
||
|
raise ValueError("Offset %d (index %d) out of bounds" % (offset, j))
|
||
|
try:
|
||
|
data_arr[j, k:k+length] = diagonal[...,:length]
|
||
|
except ValueError as e:
|
||
|
if len(diagonal) != length and len(diagonal) != 1:
|
||
|
raise ValueError(
|
||
|
"Diagonal length (index %d: %d at offset %d) does not "
|
||
|
"agree with matrix size (%d, %d)." % (
|
||
|
j, len(diagonal), offset, m, n)) from e
|
||
|
raise
|
||
|
|
||
|
return dia_matrix((data_arr, offsets), shape=(m, n)).asformat(format)
|
||
|
|
||
|
|
||
|
def identity(n, dtype='d', format=None):
|
||
|
"""Identity matrix in sparse format
|
||
|
|
||
|
Returns an identity matrix with shape (n,n) using a given
|
||
|
sparse format and dtype.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int
|
||
|
Shape of the identity matrix.
|
||
|
dtype : dtype, optional
|
||
|
Data type of the matrix
|
||
|
format : str, optional
|
||
|
Sparse format of the result, e.g., format="csr", etc.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.sparse import identity
|
||
|
>>> identity(3).toarray()
|
||
|
array([[ 1., 0., 0.],
|
||
|
[ 0., 1., 0.],
|
||
|
[ 0., 0., 1.]])
|
||
|
>>> identity(3, dtype='int8', format='dia')
|
||
|
<3x3 sparse matrix of type '<class 'numpy.int8'>'
|
||
|
with 3 stored elements (1 diagonals) in DIAgonal format>
|
||
|
|
||
|
"""
|
||
|
return eye(n, n, dtype=dtype, format=format)
|
||
|
|
||
|
|
||
|
def eye(m, n=None, k=0, dtype=float, format=None):
|
||
|
"""Sparse matrix with ones on diagonal
|
||
|
|
||
|
Returns a sparse (m x n) matrix where the kth diagonal
|
||
|
is all ones and everything else is zeros.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m : int
|
||
|
Number of rows in the matrix.
|
||
|
n : int, optional
|
||
|
Number of columns. Default: `m`.
|
||
|
k : int, optional
|
||
|
Diagonal to place ones on. Default: 0 (main diagonal).
|
||
|
dtype : dtype, optional
|
||
|
Data type of the matrix.
|
||
|
format : str, optional
|
||
|
Sparse format of the result, e.g., format="csr", etc.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy import sparse
|
||
|
>>> sparse.eye(3).toarray()
|
||
|
array([[ 1., 0., 0.],
|
||
|
[ 0., 1., 0.],
|
||
|
[ 0., 0., 1.]])
|
||
|
>>> sparse.eye(3, dtype=np.int8)
|
||
|
<3x3 sparse matrix of type '<class 'numpy.int8'>'
|
||
|
with 3 stored elements (1 diagonals) in DIAgonal format>
|
||
|
|
||
|
"""
|
||
|
if n is None:
|
||
|
n = m
|
||
|
m,n = int(m),int(n)
|
||
|
|
||
|
if m == n and k == 0:
|
||
|
# fast branch for special formats
|
||
|
if format in ['csr', 'csc']:
|
||
|
idx_dtype = get_index_dtype(maxval=n)
|
||
|
indptr = np.arange(n+1, dtype=idx_dtype)
|
||
|
indices = np.arange(n, dtype=idx_dtype)
|
||
|
data = np.ones(n, dtype=dtype)
|
||
|
cls = {'csr': csr_matrix, 'csc': csc_matrix}[format]
|
||
|
return cls((data,indices,indptr),(n,n))
|
||
|
elif format == 'coo':
|
||
|
idx_dtype = get_index_dtype(maxval=n)
|
||
|
row = np.arange(n, dtype=idx_dtype)
|
||
|
col = np.arange(n, dtype=idx_dtype)
|
||
|
data = np.ones(n, dtype=dtype)
|
||
|
return coo_matrix((data, (row, col)), (n, n))
|
||
|
|
||
|
diags = np.ones((1, max(0, min(m + k, n))), dtype=dtype)
|
||
|
return spdiags(diags, k, m, n).asformat(format)
|
||
|
|
||
|
|
||
|
def kron(A, B, format=None):
|
||
|
"""kronecker product of sparse matrices A and B
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : sparse or dense matrix
|
||
|
first matrix of the product
|
||
|
B : sparse or dense matrix
|
||
|
second matrix of the product
|
||
|
format : str, optional
|
||
|
format of the result (e.g. "csr")
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
kronecker product in a sparse matrix format
|
||
|
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy import sparse
|
||
|
>>> A = sparse.csr_matrix(np.array([[0, 2], [5, 0]]))
|
||
|
>>> B = sparse.csr_matrix(np.array([[1, 2], [3, 4]]))
|
||
|
>>> sparse.kron(A, B).toarray()
|
||
|
array([[ 0, 0, 2, 4],
|
||
|
[ 0, 0, 6, 8],
|
||
|
[ 5, 10, 0, 0],
|
||
|
[15, 20, 0, 0]])
|
||
|
|
||
|
>>> sparse.kron(A, [[1, 2], [3, 4]]).toarray()
|
||
|
array([[ 0, 0, 2, 4],
|
||
|
[ 0, 0, 6, 8],
|
||
|
[ 5, 10, 0, 0],
|
||
|
[15, 20, 0, 0]])
|
||
|
|
||
|
"""
|
||
|
B = coo_matrix(B)
|
||
|
|
||
|
if (format is None or format == "bsr") and 2*B.nnz >= B.shape[0] * B.shape[1]:
|
||
|
# B is fairly dense, use BSR
|
||
|
A = csr_matrix(A,copy=True)
|
||
|
output_shape = (A.shape[0]*B.shape[0], A.shape[1]*B.shape[1])
|
||
|
|
||
|
if A.nnz == 0 or B.nnz == 0:
|
||
|
# kronecker product is the zero matrix
|
||
|
return coo_matrix(output_shape).asformat(format)
|
||
|
|
||
|
B = B.toarray()
|
||
|
data = A.data.repeat(B.size).reshape(-1,B.shape[0],B.shape[1])
|
||
|
data = data * B
|
||
|
|
||
|
return bsr_matrix((data,A.indices,A.indptr), shape=output_shape)
|
||
|
else:
|
||
|
# use COO
|
||
|
A = coo_matrix(A)
|
||
|
output_shape = (A.shape[0]*B.shape[0], A.shape[1]*B.shape[1])
|
||
|
|
||
|
if A.nnz == 0 or B.nnz == 0:
|
||
|
# kronecker product is the zero matrix
|
||
|
return coo_matrix(output_shape).asformat(format)
|
||
|
|
||
|
# expand entries of a into blocks
|
||
|
row = A.row.repeat(B.nnz)
|
||
|
col = A.col.repeat(B.nnz)
|
||
|
data = A.data.repeat(B.nnz)
|
||
|
|
||
|
if max(A.shape[0]*B.shape[0], A.shape[1]*B.shape[1]) > np.iinfo('int32').max:
|
||
|
row = row.astype(np.int64)
|
||
|
col = col.astype(np.int64)
|
||
|
|
||
|
row *= B.shape[0]
|
||
|
col *= B.shape[1]
|
||
|
|
||
|
# increment block indices
|
||
|
row,col = row.reshape(-1,B.nnz),col.reshape(-1,B.nnz)
|
||
|
row += B.row
|
||
|
col += B.col
|
||
|
row,col = row.reshape(-1),col.reshape(-1)
|
||
|
|
||
|
# compute block entries
|
||
|
data = data.reshape(-1,B.nnz) * B.data
|
||
|
data = data.reshape(-1)
|
||
|
|
||
|
return coo_matrix((data,(row,col)), shape=output_shape).asformat(format)
|
||
|
|
||
|
|
||
|
def kronsum(A, B, format=None):
|
||
|
"""kronecker sum of sparse matrices A and B
|
||
|
|
||
|
Kronecker sum of two sparse matrices is a sum of two Kronecker
|
||
|
products kron(I_n,A) + kron(B,I_m) where A has shape (m,m)
|
||
|
and B has shape (n,n) and I_m and I_n are identity matrices
|
||
|
of shape (m,m) and (n,n), respectively.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A
|
||
|
square matrix
|
||
|
B
|
||
|
square matrix
|
||
|
format : str
|
||
|
format of the result (e.g. "csr")
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
kronecker sum in a sparse matrix format
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
|
||
|
"""
|
||
|
A = coo_matrix(A)
|
||
|
B = coo_matrix(B)
|
||
|
|
||
|
if A.shape[0] != A.shape[1]:
|
||
|
raise ValueError('A is not square')
|
||
|
|
||
|
if B.shape[0] != B.shape[1]:
|
||
|
raise ValueError('B is not square')
|
||
|
|
||
|
dtype = upcast(A.dtype, B.dtype)
|
||
|
|
||
|
L = kron(eye(B.shape[0],dtype=dtype), A, format=format)
|
||
|
R = kron(B, eye(A.shape[0],dtype=dtype), format=format)
|
||
|
|
||
|
return (L+R).asformat(format) # since L + R is not always same format
|
||
|
|
||
|
|
||
|
def _compressed_sparse_stack(blocks, axis):
|
||
|
"""
|
||
|
Stacking fast path for CSR/CSC matrices
|
||
|
(i) vstack for CSR, (ii) hstack for CSC.
|
||
|
"""
|
||
|
other_axis = 1 if axis == 0 else 0
|
||
|
data = np.concatenate([b.data for b in blocks])
|
||
|
constant_dim = blocks[0].shape[other_axis]
|
||
|
idx_dtype = get_index_dtype(arrays=[b.indptr for b in blocks],
|
||
|
maxval=max(data.size, constant_dim))
|
||
|
indices = np.empty(data.size, dtype=idx_dtype)
|
||
|
indptr = np.empty(sum(b.shape[axis] for b in blocks) + 1, dtype=idx_dtype)
|
||
|
last_indptr = idx_dtype(0)
|
||
|
sum_dim = 0
|
||
|
sum_indices = 0
|
||
|
for b in blocks:
|
||
|
if b.shape[other_axis] != constant_dim:
|
||
|
raise ValueError(f'incompatible dimensions for axis {other_axis}')
|
||
|
indices[sum_indices:sum_indices+b.indices.size] = b.indices
|
||
|
sum_indices += b.indices.size
|
||
|
idxs = slice(sum_dim, sum_dim + b.shape[axis])
|
||
|
indptr[idxs] = b.indptr[:-1]
|
||
|
indptr[idxs] += last_indptr
|
||
|
sum_dim += b.shape[axis]
|
||
|
last_indptr += b.indptr[-1]
|
||
|
indptr[-1] = last_indptr
|
||
|
if axis == 0:
|
||
|
return csr_matrix((data, indices, indptr),
|
||
|
shape=(sum_dim, constant_dim))
|
||
|
else:
|
||
|
return csc_matrix((data, indices, indptr),
|
||
|
shape=(constant_dim, sum_dim))
|
||
|
|
||
|
|
||
|
def _stack_along_minor_axis(blocks, axis):
|
||
|
"""
|
||
|
Stacking fast path for CSR/CSC matrices along the minor axis
|
||
|
(i) hstack for CSR, (ii) vstack for CSC.
|
||
|
"""
|
||
|
n_blocks = len(blocks)
|
||
|
if n_blocks == 0:
|
||
|
raise ValueError('Missing block matrices')
|
||
|
|
||
|
if n_blocks == 1:
|
||
|
return blocks[0]
|
||
|
|
||
|
# check for incompatible dimensions
|
||
|
other_axis = 1 if axis == 0 else 0
|
||
|
other_axis_dims = set(b.shape[other_axis] for b in blocks)
|
||
|
if len(other_axis_dims) > 1:
|
||
|
raise ValueError(f'Mismatching dimensions along axis {other_axis}: '
|
||
|
f'{other_axis_dims}')
|
||
|
constant_dim, = other_axis_dims
|
||
|
|
||
|
# Do the stacking
|
||
|
indptr_list = [b.indptr for b in blocks]
|
||
|
data_cat = np.concatenate([b.data for b in blocks])
|
||
|
|
||
|
# Need to check if any indices/indptr, would be too large post-
|
||
|
# concatenation for np.int32:
|
||
|
# - The max value of indices is the output array's stacking-axis length - 1
|
||
|
# - The max value in indptr is the number of non-zero entries. This is
|
||
|
# exceedingly unlikely to require int64, but is checked out of an
|
||
|
# abundance of caution.
|
||
|
sum_dim = sum(b.shape[axis] for b in blocks)
|
||
|
nnz = sum(len(b.indices) for b in blocks)
|
||
|
idx_dtype = get_index_dtype(maxval=max(sum_dim - 1, nnz))
|
||
|
stack_dim_cat = np.array([b.shape[axis] for b in blocks], dtype=idx_dtype)
|
||
|
if data_cat.size > 0:
|
||
|
indptr_cat = np.concatenate(indptr_list).astype(idx_dtype)
|
||
|
indices_cat = (np.concatenate([b.indices for b in blocks])
|
||
|
.astype(idx_dtype))
|
||
|
indptr = np.empty(constant_dim + 1, dtype=idx_dtype)
|
||
|
indices = np.empty_like(indices_cat)
|
||
|
data = np.empty_like(data_cat)
|
||
|
csr_hstack(n_blocks, constant_dim, stack_dim_cat,
|
||
|
indptr_cat, indices_cat, data_cat,
|
||
|
indptr, indices, data)
|
||
|
else:
|
||
|
indptr = np.zeros(constant_dim + 1, dtype=idx_dtype)
|
||
|
indices = np.empty(0, dtype=idx_dtype)
|
||
|
data = np.empty(0, dtype=data_cat.dtype)
|
||
|
|
||
|
if axis == 0:
|
||
|
return csc_matrix((data, indices, indptr),
|
||
|
shape=(sum_dim, constant_dim))
|
||
|
else:
|
||
|
return csr_matrix((data, indices, indptr),
|
||
|
shape=(constant_dim, sum_dim))
|
||
|
|
||
|
|
||
|
def hstack(blocks, format=None, dtype=None):
|
||
|
"""
|
||
|
Stack sparse matrices horizontally (column wise)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
blocks
|
||
|
sequence of sparse matrices with compatible shapes
|
||
|
format : str
|
||
|
sparse format of the result (e.g., "csr")
|
||
|
by default an appropriate sparse matrix format is returned.
|
||
|
This choice is subject to change.
|
||
|
dtype : dtype, optional
|
||
|
The data-type of the output matrix. If not given, the dtype is
|
||
|
determined from that of `blocks`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
vstack : stack sparse matrices vertically (row wise)
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.sparse import coo_matrix, hstack
|
||
|
>>> A = coo_matrix([[1, 2], [3, 4]])
|
||
|
>>> B = coo_matrix([[5], [6]])
|
||
|
>>> hstack([A,B]).toarray()
|
||
|
array([[1, 2, 5],
|
||
|
[3, 4, 6]])
|
||
|
|
||
|
"""
|
||
|
return bmat([blocks], format=format, dtype=dtype)
|
||
|
|
||
|
|
||
|
def vstack(blocks, format=None, dtype=None):
|
||
|
"""
|
||
|
Stack sparse matrices vertically (row wise)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
blocks
|
||
|
sequence of sparse matrices with compatible shapes
|
||
|
format : str, optional
|
||
|
sparse format of the result (e.g., "csr")
|
||
|
by default an appropriate sparse matrix format is returned.
|
||
|
This choice is subject to change.
|
||
|
dtype : dtype, optional
|
||
|
The data-type of the output matrix. If not given, the dtype is
|
||
|
determined from that of `blocks`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
hstack : stack sparse matrices horizontally (column wise)
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.sparse import coo_matrix, vstack
|
||
|
>>> A = coo_matrix([[1, 2], [3, 4]])
|
||
|
>>> B = coo_matrix([[5, 6]])
|
||
|
>>> vstack([A, B]).toarray()
|
||
|
array([[1, 2],
|
||
|
[3, 4],
|
||
|
[5, 6]])
|
||
|
|
||
|
"""
|
||
|
return bmat([[b] for b in blocks], format=format, dtype=dtype)
|
||
|
|
||
|
|
||
|
def bmat(blocks, format=None, dtype=None):
|
||
|
"""
|
||
|
Build a sparse matrix from sparse sub-blocks
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
blocks : array_like
|
||
|
Grid of sparse matrices with compatible shapes.
|
||
|
An entry of None implies an all-zero matrix.
|
||
|
format : {'bsr', 'coo', 'csc', 'csr', 'dia', 'dok', 'lil'}, optional
|
||
|
The sparse format of the result (e.g. "csr"). By default an
|
||
|
appropriate sparse matrix format is returned.
|
||
|
This choice is subject to change.
|
||
|
dtype : dtype, optional
|
||
|
The data-type of the output matrix. If not given, the dtype is
|
||
|
determined from that of `blocks`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
bmat : sparse matrix
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
block_diag, diags
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.sparse import coo_matrix, bmat
|
||
|
>>> A = coo_matrix([[1, 2], [3, 4]])
|
||
|
>>> B = coo_matrix([[5], [6]])
|
||
|
>>> C = coo_matrix([[7]])
|
||
|
>>> bmat([[A, B], [None, C]]).toarray()
|
||
|
array([[1, 2, 5],
|
||
|
[3, 4, 6],
|
||
|
[0, 0, 7]])
|
||
|
|
||
|
>>> bmat([[A, None], [None, C]]).toarray()
|
||
|
array([[1, 2, 0],
|
||
|
[3, 4, 0],
|
||
|
[0, 0, 7]])
|
||
|
|
||
|
"""
|
||
|
|
||
|
blocks = np.asarray(blocks, dtype='object')
|
||
|
|
||
|
if blocks.ndim != 2:
|
||
|
raise ValueError('blocks must be 2-D')
|
||
|
|
||
|
M,N = blocks.shape
|
||
|
|
||
|
# check for fast path cases
|
||
|
if (format in (None, 'csr') and all(isinstance(b, csr_matrix)
|
||
|
for b in blocks.flat)):
|
||
|
if N > 1:
|
||
|
# stack along columns (axis 1):
|
||
|
blocks = [[_stack_along_minor_axis(blocks[b, :], 1)]
|
||
|
for b in range(M)] # must have shape: (M, 1)
|
||
|
blocks = np.asarray(blocks, dtype='object')
|
||
|
|
||
|
# stack along rows (axis 0):
|
||
|
A = _compressed_sparse_stack(blocks[:, 0], 0)
|
||
|
if dtype is not None:
|
||
|
A = A.astype(dtype)
|
||
|
return A
|
||
|
elif (format in (None, 'csc') and all(isinstance(b, csc_matrix)
|
||
|
for b in blocks.flat)):
|
||
|
if M > 1:
|
||
|
# stack along rows (axis 0):
|
||
|
blocks = [[_stack_along_minor_axis(blocks[:, b], 0)
|
||
|
for b in range(N)]] # must have shape: (1, N)
|
||
|
blocks = np.asarray(blocks, dtype='object')
|
||
|
|
||
|
# stack along columns (axis 1):
|
||
|
A = _compressed_sparse_stack(blocks[0, :], 1)
|
||
|
if dtype is not None:
|
||
|
A = A.astype(dtype)
|
||
|
return A
|
||
|
|
||
|
block_mask = np.zeros(blocks.shape, dtype=bool)
|
||
|
brow_lengths = np.zeros(M, dtype=np.int64)
|
||
|
bcol_lengths = np.zeros(N, dtype=np.int64)
|
||
|
|
||
|
# convert everything to COO format
|
||
|
for i in range(M):
|
||
|
for j in range(N):
|
||
|
if blocks[i,j] is not None:
|
||
|
A = coo_matrix(blocks[i,j])
|
||
|
blocks[i,j] = A
|
||
|
block_mask[i,j] = True
|
||
|
|
||
|
if brow_lengths[i] == 0:
|
||
|
brow_lengths[i] = A.shape[0]
|
||
|
elif brow_lengths[i] != A.shape[0]:
|
||
|
msg = (f'blocks[{i},:] has incompatible row dimensions. '
|
||
|
f'Got blocks[{i},{j}].shape[0] == {A.shape[0]}, '
|
||
|
f'expected {brow_lengths[i]}.')
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
if bcol_lengths[j] == 0:
|
||
|
bcol_lengths[j] = A.shape[1]
|
||
|
elif bcol_lengths[j] != A.shape[1]:
|
||
|
msg = (f'blocks[:,{j}] has incompatible column '
|
||
|
f'dimensions. '
|
||
|
f'Got blocks[{i},{j}].shape[1] == {A.shape[1]}, '
|
||
|
f'expected {bcol_lengths[j]}.')
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
nnz = sum(block.nnz for block in blocks[block_mask])
|
||
|
if dtype is None:
|
||
|
all_dtypes = [blk.dtype for blk in blocks[block_mask]]
|
||
|
dtype = upcast(*all_dtypes) if all_dtypes else None
|
||
|
|
||
|
row_offsets = np.append(0, np.cumsum(brow_lengths))
|
||
|
col_offsets = np.append(0, np.cumsum(bcol_lengths))
|
||
|
|
||
|
shape = (row_offsets[-1], col_offsets[-1])
|
||
|
|
||
|
data = np.empty(nnz, dtype=dtype)
|
||
|
idx_dtype = get_index_dtype(maxval=max(shape))
|
||
|
row = np.empty(nnz, dtype=idx_dtype)
|
||
|
col = np.empty(nnz, dtype=idx_dtype)
|
||
|
|
||
|
nnz = 0
|
||
|
ii, jj = np.nonzero(block_mask)
|
||
|
for i, j in zip(ii, jj):
|
||
|
B = blocks[i, j]
|
||
|
idx = slice(nnz, nnz + B.nnz)
|
||
|
data[idx] = B.data
|
||
|
np.add(B.row, row_offsets[i], out=row[idx], dtype=idx_dtype)
|
||
|
np.add(B.col, col_offsets[j], out=col[idx], dtype=idx_dtype)
|
||
|
nnz += B.nnz
|
||
|
|
||
|
return coo_matrix((data, (row, col)), shape=shape).asformat(format)
|
||
|
|
||
|
|
||
|
def block_diag(mats, format=None, dtype=None):
|
||
|
"""
|
||
|
Build a block diagonal sparse matrix from provided matrices.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
mats : sequence of matrices
|
||
|
Input matrices.
|
||
|
format : str, optional
|
||
|
The sparse format of the result (e.g., "csr"). If not given, the matrix
|
||
|
is returned in "coo" format.
|
||
|
dtype : dtype specifier, optional
|
||
|
The data-type of the output matrix. If not given, the dtype is
|
||
|
determined from that of `blocks`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
res : sparse matrix
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
|
||
|
.. versionadded:: 0.11.0
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
bmat, diags
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.sparse import coo_matrix, block_diag
|
||
|
>>> A = coo_matrix([[1, 2], [3, 4]])
|
||
|
>>> B = coo_matrix([[5], [6]])
|
||
|
>>> C = coo_matrix([[7]])
|
||
|
>>> block_diag((A, B, C)).toarray()
|
||
|
array([[1, 2, 0, 0],
|
||
|
[3, 4, 0, 0],
|
||
|
[0, 0, 5, 0],
|
||
|
[0, 0, 6, 0],
|
||
|
[0, 0, 0, 7]])
|
||
|
|
||
|
"""
|
||
|
row = []
|
||
|
col = []
|
||
|
data = []
|
||
|
r_idx = 0
|
||
|
c_idx = 0
|
||
|
for a in mats:
|
||
|
if isinstance(a, (list, numbers.Number)):
|
||
|
a = coo_matrix(a)
|
||
|
nrows, ncols = a.shape
|
||
|
if issparse(a):
|
||
|
a = a.tocoo()
|
||
|
row.append(a.row + r_idx)
|
||
|
col.append(a.col + c_idx)
|
||
|
data.append(a.data)
|
||
|
else:
|
||
|
a_row, a_col = np.divmod(np.arange(nrows*ncols), ncols)
|
||
|
row.append(a_row + r_idx)
|
||
|
col.append(a_col + c_idx)
|
||
|
data.append(a.ravel())
|
||
|
r_idx += nrows
|
||
|
c_idx += ncols
|
||
|
row = np.concatenate(row)
|
||
|
col = np.concatenate(col)
|
||
|
data = np.concatenate(data)
|
||
|
return coo_matrix((data, (row, col)),
|
||
|
shape=(r_idx, c_idx),
|
||
|
dtype=dtype).asformat(format)
|
||
|
|
||
|
|
||
|
def random(m, n, density=0.01, format='coo', dtype=None,
|
||
|
random_state=None, data_rvs=None):
|
||
|
"""Generate a sparse matrix of the given shape and density with randomly
|
||
|
distributed values.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m, n : int
|
||
|
shape of the matrix
|
||
|
density : real, optional
|
||
|
density of the generated matrix: density equal to one means a full
|
||
|
matrix, density of 0 means a matrix with no non-zero items.
|
||
|
format : str, optional
|
||
|
sparse matrix format.
|
||
|
dtype : dtype, optional
|
||
|
type of the returned matrix values.
|
||
|
random_state : {None, int, `numpy.random.Generator`,
|
||
|
`numpy.random.RandomState`}, optional
|
||
|
|
||
|
If `seed` is None (or `np.random`), the `numpy.random.RandomState`
|
||
|
singleton is used.
|
||
|
If `seed` is an int, a new ``RandomState`` instance is used,
|
||
|
seeded with `seed`.
|
||
|
If `seed` is already a ``Generator`` or ``RandomState`` instance then
|
||
|
that instance is used.
|
||
|
This random state will be used
|
||
|
for sampling the sparsity structure, but not necessarily for sampling
|
||
|
the values of the structurally nonzero entries of the matrix.
|
||
|
data_rvs : callable, optional
|
||
|
Samples a requested number of random values.
|
||
|
This function should take a single argument specifying the length
|
||
|
of the ndarray that it will return. The structurally nonzero entries
|
||
|
of the sparse random matrix will be taken from the array sampled
|
||
|
by this function. By default, uniform [0, 1) random values will be
|
||
|
sampled using the same random state as is used for sampling
|
||
|
the sparsity structure.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
res : sparse matrix
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Only float types are supported for now.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.sparse import random
|
||
|
>>> from scipy import stats
|
||
|
>>> from numpy.random import default_rng
|
||
|
>>> rng = default_rng()
|
||
|
>>> rvs = stats.poisson(25, loc=10).rvs
|
||
|
>>> S = random(3, 4, density=0.25, random_state=rng, data_rvs=rvs)
|
||
|
>>> S.A
|
||
|
array([[ 36., 0., 33., 0.], # random
|
||
|
[ 0., 0., 0., 0.],
|
||
|
[ 0., 0., 36., 0.]])
|
||
|
|
||
|
>>> from scipy.sparse import random
|
||
|
>>> from scipy.stats import rv_continuous
|
||
|
>>> class CustomDistribution(rv_continuous):
|
||
|
... def _rvs(self, size=None, random_state=None):
|
||
|
... return random_state.standard_normal(size)
|
||
|
>>> X = CustomDistribution(seed=rng)
|
||
|
>>> Y = X() # get a frozen version of the distribution
|
||
|
>>> S = random(3, 4, density=0.25, random_state=rng, data_rvs=Y.rvs)
|
||
|
>>> S.A
|
||
|
array([[ 0. , 0. , 0. , 0. ], # random
|
||
|
[ 0.13569738, 1.9467163 , -0.81205367, 0. ],
|
||
|
[ 0. , 0. , 0. , 0. ]])
|
||
|
|
||
|
"""
|
||
|
if density < 0 or density > 1:
|
||
|
raise ValueError("density expected to be 0 <= density <= 1")
|
||
|
dtype = np.dtype(dtype)
|
||
|
|
||
|
mn = m * n
|
||
|
|
||
|
tp = np.intc
|
||
|
if mn > np.iinfo(tp).max:
|
||
|
tp = np.int64
|
||
|
|
||
|
if mn > np.iinfo(tp).max:
|
||
|
msg = """\
|
||
|
Trying to generate a random sparse matrix such as the product of dimensions is
|
||
|
greater than %d - this is not supported on this machine
|
||
|
"""
|
||
|
raise ValueError(msg % np.iinfo(tp).max)
|
||
|
|
||
|
# Number of non zero values
|
||
|
k = int(round(density * m * n))
|
||
|
|
||
|
random_state = check_random_state(random_state)
|
||
|
|
||
|
if data_rvs is None:
|
||
|
if np.issubdtype(dtype, np.integer):
|
||
|
def data_rvs(n):
|
||
|
return rng_integers(random_state,
|
||
|
np.iinfo(dtype).min,
|
||
|
np.iinfo(dtype).max,
|
||
|
n,
|
||
|
dtype=dtype)
|
||
|
elif np.issubdtype(dtype, np.complexfloating):
|
||
|
def data_rvs(n):
|
||
|
return (random_state.uniform(size=n) +
|
||
|
random_state.uniform(size=n) * 1j)
|
||
|
else:
|
||
|
data_rvs = partial(random_state.uniform, 0., 1.)
|
||
|
|
||
|
ind = random_state.choice(mn, size=k, replace=False)
|
||
|
|
||
|
j = np.floor(ind * 1. / m).astype(tp, copy=False)
|
||
|
i = (ind - j * m).astype(tp, copy=False)
|
||
|
vals = data_rvs(k).astype(dtype, copy=False)
|
||
|
return coo_matrix((vals, (i, j)), shape=(m, n)).asformat(format,
|
||
|
copy=False)
|
||
|
|
||
|
|
||
|
def rand(m, n, density=0.01, format="coo", dtype=None, random_state=None):
|
||
|
"""Generate a sparse matrix of the given shape and density with uniformly
|
||
|
distributed values.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
m, n : int
|
||
|
shape of the matrix
|
||
|
density : real, optional
|
||
|
density of the generated matrix: density equal to one means a full
|
||
|
matrix, density of 0 means a matrix with no non-zero items.
|
||
|
format : str, optional
|
||
|
sparse matrix format.
|
||
|
dtype : dtype, optional
|
||
|
type of the returned matrix values.
|
||
|
random_state : {None, int, `numpy.random.Generator`,
|
||
|
`numpy.random.RandomState`}, optional
|
||
|
|
||
|
If `seed` is None (or `np.random`), the `numpy.random.RandomState`
|
||
|
singleton is used.
|
||
|
If `seed` is an int, a new ``RandomState`` instance is used,
|
||
|
seeded with `seed`.
|
||
|
If `seed` is already a ``Generator`` or ``RandomState`` instance then
|
||
|
that instance is used.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
res : sparse matrix
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Only float types are supported for now.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
scipy.sparse.random : Similar function that allows a user-specified random
|
||
|
data source.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.sparse import rand
|
||
|
>>> matrix = rand(3, 4, density=0.25, format="csr", random_state=42)
|
||
|
>>> matrix
|
||
|
<3x4 sparse matrix of type '<class 'numpy.float64'>'
|
||
|
with 3 stored elements in Compressed Sparse Row format>
|
||
|
>>> matrix.toarray()
|
||
|
array([[0.05641158, 0. , 0. , 0.65088847],
|
||
|
[0. , 0. , 0. , 0.14286682],
|
||
|
[0. , 0. , 0. , 0. ]])
|
||
|
|
||
|
"""
|
||
|
return random(m, n, density, format, dtype, random_state)
|