Intelegentny_Pszczelarz/.venv/Lib/site-packages/sklearn/_loss/glm_distribution.py

374 lines
12 KiB
Python
Raw Normal View History

2023-06-19 00:49:18 +02:00
"""
Distribution functions used in GLM
"""
# Author: Christian Lorentzen <lorentzen.ch@googlemail.com>
# License: BSD 3 clause
#
# TODO(1.3): remove file
# This is only used for backward compatibility in _GeneralizedLinearRegressor
# for the deprecated family attribute.
from abc import ABCMeta, abstractmethod
from collections import namedtuple
import numbers
import numpy as np
from scipy.special import xlogy
DistributionBoundary = namedtuple("DistributionBoundary", ("value", "inclusive"))
class ExponentialDispersionModel(metaclass=ABCMeta):
r"""Base class for reproductive Exponential Dispersion Models (EDM).
The pdf of :math:`Y\sim \mathrm{EDM}(y_\textrm{pred}, \phi)` is given by
.. math:: p(y| \theta, \phi) = c(y, \phi)
\exp\left(\frac{\theta y-A(\theta)}{\phi}\right)
= \tilde{c}(y, \phi)
\exp\left(-\frac{d(y, y_\textrm{pred})}{2\phi}\right)
with mean :math:`\mathrm{E}[Y] = A'(\theta) = y_\textrm{pred}`,
variance :math:`\mathrm{Var}[Y] = \phi \cdot v(y_\textrm{pred})`,
unit variance :math:`v(y_\textrm{pred})` and
unit deviance :math:`d(y,y_\textrm{pred})`.
Methods
-------
deviance
deviance_derivative
in_y_range
unit_deviance
unit_deviance_derivative
unit_variance
References
----------
https://en.wikipedia.org/wiki/Exponential_dispersion_model.
"""
def in_y_range(self, y):
"""Returns ``True`` if y is in the valid range of Y~EDM.
Parameters
----------
y : array of shape (n_samples,)
Target values.
"""
# Note that currently supported distributions have +inf upper bound
if not isinstance(self._lower_bound, DistributionBoundary):
raise TypeError(
"_lower_bound attribute must be of type DistributionBoundary"
)
if self._lower_bound.inclusive:
return np.greater_equal(y, self._lower_bound.value)
else:
return np.greater(y, self._lower_bound.value)
@abstractmethod
def unit_variance(self, y_pred):
r"""Compute the unit variance function.
The unit variance :math:`v(y_\textrm{pred})` determines the variance as
a function of the mean :math:`y_\textrm{pred}` by
:math:`\mathrm{Var}[Y_i] = \phi/s_i*v(y_\textrm{pred}_i)`.
It can also be derived from the unit deviance
:math:`d(y,y_\textrm{pred})` as
.. math:: v(y_\textrm{pred}) = \frac{2}{
\frac{\partial^2 d(y,y_\textrm{pred})}{
\partialy_\textrm{pred}^2}}\big|_{y=y_\textrm{pred}}
See also :func:`variance`.
Parameters
----------
y_pred : array of shape (n_samples,)
Predicted mean.
"""
@abstractmethod
def unit_deviance(self, y, y_pred, check_input=False):
r"""Compute the unit deviance.
The unit_deviance :math:`d(y,y_\textrm{pred})` can be defined by the
log-likelihood as
:math:`d(y,y_\textrm{pred}) = -2\phi\cdot
\left(loglike(y,y_\textrm{pred},\phi) - loglike(y,y,\phi)\right).`
Parameters
----------
y : array of shape (n_samples,)
Target values.
y_pred : array of shape (n_samples,)
Predicted mean.
check_input : bool, default=False
If True raise an exception on invalid y or y_pred values, otherwise
they will be propagated as NaN.
Returns
-------
deviance: array of shape (n_samples,)
Computed deviance
"""
def unit_deviance_derivative(self, y, y_pred):
r"""Compute the derivative of the unit deviance w.r.t. y_pred.
The derivative of the unit deviance is given by
:math:`\frac{\partial}{\partialy_\textrm{pred}}d(y,y_\textrm{pred})
= -2\frac{y-y_\textrm{pred}}{v(y_\textrm{pred})}`
with unit variance :math:`v(y_\textrm{pred})`.
Parameters
----------
y : array of shape (n_samples,)
Target values.
y_pred : array of shape (n_samples,)
Predicted mean.
"""
return -2 * (y - y_pred) / self.unit_variance(y_pred)
def deviance(self, y, y_pred, weights=1):
r"""Compute the deviance.
The deviance is a weighted sum of the per sample unit deviances,
:math:`D = \sum_i s_i \cdot d(y_i, y_\textrm{pred}_i)`
with weights :math:`s_i` and unit deviance
:math:`d(y,y_\textrm{pred})`.
In terms of the log-likelihood it is :math:`D = -2\phi\cdot
\left(loglike(y,y_\textrm{pred},\frac{phi}{s})
- loglike(y,y,\frac{phi}{s})\right)`.
Parameters
----------
y : array of shape (n_samples,)
Target values.
y_pred : array of shape (n_samples,)
Predicted mean.
weights : {int, array of shape (n_samples,)}, default=1
Weights or exposure to which variance is inverse proportional.
"""
return np.sum(weights * self.unit_deviance(y, y_pred))
def deviance_derivative(self, y, y_pred, weights=1):
r"""Compute the derivative of the deviance w.r.t. y_pred.
It gives :math:`\frac{\partial}{\partial y_\textrm{pred}}
D(y, \y_\textrm{pred}; weights)`.
Parameters
----------
y : array, shape (n_samples,)
Target values.
y_pred : array, shape (n_samples,)
Predicted mean.
weights : {int, array of shape (n_samples,)}, default=1
Weights or exposure to which variance is inverse proportional.
"""
return weights * self.unit_deviance_derivative(y, y_pred)
class TweedieDistribution(ExponentialDispersionModel):
r"""A class for the Tweedie distribution.
A Tweedie distribution with mean :math:`y_\textrm{pred}=\mathrm{E}[Y]`
is uniquely defined by it's mean-variance relationship
:math:`\mathrm{Var}[Y] \propto y_\textrm{pred}^power`.
Special cases are:
===== ================
Power Distribution
===== ================
0 Normal
1 Poisson
(1,2) Compound Poisson
2 Gamma
3 Inverse Gaussian
Parameters
----------
power : float, default=0
The variance power of the `unit_variance`
:math:`v(y_\textrm{pred}) = y_\textrm{pred}^{power}`.
For ``0<power<1``, no distribution exists.
"""
def __init__(self, power=0):
self.power = power
@property
def power(self):
return self._power
@power.setter
def power(self, power):
# We use a property with a setter, to update lower and
# upper bound when the power parameter is updated e.g. in grid
# search.
if not isinstance(power, numbers.Real):
raise TypeError("power must be a real number, input was {0}".format(power))
if power <= 0:
# Extreme Stable or Normal distribution
self._lower_bound = DistributionBoundary(-np.Inf, inclusive=False)
elif 0 < power < 1:
raise ValueError(
"Tweedie distribution is only defined for power<=0 and power>=1."
)
elif 1 <= power < 2:
# Poisson or Compound Poisson distribution
self._lower_bound = DistributionBoundary(0, inclusive=True)
elif power >= 2:
# Gamma, Positive Stable, Inverse Gaussian distributions
self._lower_bound = DistributionBoundary(0, inclusive=False)
else: # pragma: no cover
# this branch should be unreachable.
raise ValueError
self._power = power
def unit_variance(self, y_pred):
"""Compute the unit variance of a Tweedie distribution
v(y_\textrm{pred})=y_\textrm{pred}**power.
Parameters
----------
y_pred : array of shape (n_samples,)
Predicted mean.
"""
return np.power(y_pred, self.power)
def unit_deviance(self, y, y_pred, check_input=False):
r"""Compute the unit deviance.
The unit_deviance :math:`d(y,y_\textrm{pred})` can be defined by the
log-likelihood as
:math:`d(y,y_\textrm{pred}) = -2\phi\cdot
\left(loglike(y,y_\textrm{pred},\phi) - loglike(y,y,\phi)\right).`
Parameters
----------
y : array of shape (n_samples,)
Target values.
y_pred : array of shape (n_samples,)
Predicted mean.
check_input : bool, default=False
If True raise an exception on invalid y or y_pred values, otherwise
they will be propagated as NaN.
Returns
-------
deviance: array of shape (n_samples,)
Computed deviance
"""
p = self.power
if check_input:
message = (
"Mean Tweedie deviance error with power={} can only be used on ".format(
p
)
)
if p < 0:
# 'Extreme stable', y any real number, y_pred > 0
if (y_pred <= 0).any():
raise ValueError(message + "strictly positive y_pred.")
elif p == 0:
# Normal, y and y_pred can be any real number
pass
elif 0 < p < 1:
raise ValueError(
"Tweedie deviance is only defined for power<=0 and power>=1."
)
elif 1 <= p < 2:
# Poisson and compound Poisson distribution, y >= 0, y_pred > 0
if (y < 0).any() or (y_pred <= 0).any():
raise ValueError(
message + "non-negative y and strictly positive y_pred."
)
elif p >= 2:
# Gamma and Extreme stable distribution, y and y_pred > 0
if (y <= 0).any() or (y_pred <= 0).any():
raise ValueError(message + "strictly positive y and y_pred.")
else: # pragma: nocover
# Unreachable statement
raise ValueError
if p < 0:
# 'Extreme stable', y any real number, y_pred > 0
dev = 2 * (
np.power(np.maximum(y, 0), 2 - p) / ((1 - p) * (2 - p))
- y * np.power(y_pred, 1 - p) / (1 - p)
+ np.power(y_pred, 2 - p) / (2 - p)
)
elif p == 0:
# Normal distribution, y and y_pred any real number
dev = (y - y_pred) ** 2
elif p < 1:
raise ValueError(
"Tweedie deviance is only defined for power<=0 and power>=1."
)
elif p == 1:
# Poisson distribution
dev = 2 * (xlogy(y, y / y_pred) - y + y_pred)
elif p == 2:
# Gamma distribution
dev = 2 * (np.log(y_pred / y) + y / y_pred - 1)
else:
dev = 2 * (
np.power(y, 2 - p) / ((1 - p) * (2 - p))
- y * np.power(y_pred, 1 - p) / (1 - p)
+ np.power(y_pred, 2 - p) / (2 - p)
)
return dev
class NormalDistribution(TweedieDistribution):
"""Class for the Normal (aka Gaussian) distribution."""
def __init__(self):
super().__init__(power=0)
class PoissonDistribution(TweedieDistribution):
"""Class for the scaled Poisson distribution."""
def __init__(self):
super().__init__(power=1)
class GammaDistribution(TweedieDistribution):
"""Class for the Gamma distribution."""
def __init__(self):
super().__init__(power=2)
class InverseGaussianDistribution(TweedieDistribution):
"""Class for the scaled InverseGaussianDistribution distribution."""
def __init__(self):
super().__init__(power=3)
EDM_DISTRIBUTIONS = {
"normal": NormalDistribution,
"poisson": PoissonDistribution,
"gamma": GammaDistribution,
"inverse-gaussian": InverseGaussianDistribution,
}