890 lines
34 KiB
Python
890 lines
34 KiB
Python
|
from time import time
|
||
|
from collections import namedtuple
|
||
|
from numbers import Integral, Real
|
||
|
import warnings
|
||
|
|
||
|
from scipy import stats
|
||
|
import numpy as np
|
||
|
|
||
|
from ..base import clone
|
||
|
from ..exceptions import ConvergenceWarning
|
||
|
from ..preprocessing import normalize
|
||
|
from ..utils import (
|
||
|
check_array,
|
||
|
check_random_state,
|
||
|
is_scalar_nan,
|
||
|
_safe_assign,
|
||
|
_safe_indexing,
|
||
|
)
|
||
|
from ..utils.validation import FLOAT_DTYPES, check_is_fitted
|
||
|
from ..utils.validation import _check_feature_names_in
|
||
|
from ..utils._mask import _get_mask
|
||
|
from ..utils._param_validation import HasMethods, Interval, StrOptions
|
||
|
|
||
|
from ._base import _BaseImputer
|
||
|
from ._base import SimpleImputer
|
||
|
from ._base import _check_inputs_dtype
|
||
|
|
||
|
|
||
|
_ImputerTriplet = namedtuple(
|
||
|
"_ImputerTriplet", ["feat_idx", "neighbor_feat_idx", "estimator"]
|
||
|
)
|
||
|
|
||
|
|
||
|
def _assign_where(X1, X2, cond):
|
||
|
"""Assign X2 to X1 where cond is True.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X1 : ndarray or dataframe of shape (n_samples, n_features)
|
||
|
Data.
|
||
|
|
||
|
X2 : ndarray of shape (n_samples, n_features)
|
||
|
Data to be assigned.
|
||
|
|
||
|
cond : ndarray of shape (n_samples, n_features)
|
||
|
Boolean mask to assign data.
|
||
|
"""
|
||
|
if hasattr(X1, "mask"): # pandas dataframes
|
||
|
X1.mask(cond=cond, other=X2, inplace=True)
|
||
|
else: # ndarrays
|
||
|
X1[cond] = X2[cond]
|
||
|
|
||
|
|
||
|
class IterativeImputer(_BaseImputer):
|
||
|
"""Multivariate imputer that estimates each feature from all the others.
|
||
|
|
||
|
A strategy for imputing missing values by modeling each feature with
|
||
|
missing values as a function of other features in a round-robin fashion.
|
||
|
|
||
|
Read more in the :ref:`User Guide <iterative_imputer>`.
|
||
|
|
||
|
.. versionadded:: 0.21
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
This estimator is still **experimental** for now: the predictions
|
||
|
and the API might change without any deprecation cycle. To use it,
|
||
|
you need to explicitly import `enable_iterative_imputer`::
|
||
|
|
||
|
>>> # explicitly require this experimental feature
|
||
|
>>> from sklearn.experimental import enable_iterative_imputer # noqa
|
||
|
>>> # now you can import normally from sklearn.impute
|
||
|
>>> from sklearn.impute import IterativeImputer
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
estimator : estimator object, default=BayesianRidge()
|
||
|
The estimator to use at each step of the round-robin imputation.
|
||
|
If `sample_posterior=True`, the estimator must support
|
||
|
`return_std` in its `predict` method.
|
||
|
|
||
|
missing_values : int or np.nan, default=np.nan
|
||
|
The placeholder for the missing values. All occurrences of
|
||
|
`missing_values` will be imputed. For pandas' dataframes with
|
||
|
nullable integer dtypes with missing values, `missing_values`
|
||
|
should be set to `np.nan`, since `pd.NA` will be converted to `np.nan`.
|
||
|
|
||
|
sample_posterior : bool, default=False
|
||
|
Whether to sample from the (Gaussian) predictive posterior of the
|
||
|
fitted estimator for each imputation. Estimator must support
|
||
|
`return_std` in its `predict` method if set to `True`. Set to
|
||
|
`True` if using `IterativeImputer` for multiple imputations.
|
||
|
|
||
|
max_iter : int, default=10
|
||
|
Maximum number of imputation rounds to perform before returning the
|
||
|
imputations computed during the final round. A round is a single
|
||
|
imputation of each feature with missing values. The stopping criterion
|
||
|
is met once `max(abs(X_t - X_{t-1}))/max(abs(X[known_vals])) < tol`,
|
||
|
where `X_t` is `X` at iteration `t`. Note that early stopping is only
|
||
|
applied if `sample_posterior=False`.
|
||
|
|
||
|
tol : float, default=1e-3
|
||
|
Tolerance of the stopping condition.
|
||
|
|
||
|
n_nearest_features : int, default=None
|
||
|
Number of other features to use to estimate the missing values of
|
||
|
each feature column. Nearness between features is measured using
|
||
|
the absolute correlation coefficient between each feature pair (after
|
||
|
initial imputation). To ensure coverage of features throughout the
|
||
|
imputation process, the neighbor features are not necessarily nearest,
|
||
|
but are drawn with probability proportional to correlation for each
|
||
|
imputed target feature. Can provide significant speed-up when the
|
||
|
number of features is huge. If `None`, all features will be used.
|
||
|
|
||
|
initial_strategy : {'mean', 'median', 'most_frequent', 'constant'}, \
|
||
|
default='mean'
|
||
|
Which strategy to use to initialize the missing values. Same as the
|
||
|
`strategy` parameter in :class:`~sklearn.impute.SimpleImputer`.
|
||
|
|
||
|
imputation_order : {'ascending', 'descending', 'roman', 'arabic', \
|
||
|
'random'}, default='ascending'
|
||
|
The order in which the features will be imputed. Possible values:
|
||
|
|
||
|
- `'ascending'`: From features with fewest missing values to most.
|
||
|
- `'descending'`: From features with most missing values to fewest.
|
||
|
- `'roman'`: Left to right.
|
||
|
- `'arabic'`: Right to left.
|
||
|
- `'random'`: A random order for each round.
|
||
|
|
||
|
skip_complete : bool, default=False
|
||
|
If `True` then features with missing values during :meth:`transform`
|
||
|
which did not have any missing values during :meth:`fit` will be
|
||
|
imputed with the initial imputation method only. Set to `True` if you
|
||
|
have many features with no missing values at both :meth:`fit` and
|
||
|
:meth:`transform` time to save compute.
|
||
|
|
||
|
min_value : float or array-like of shape (n_features,), default=-np.inf
|
||
|
Minimum possible imputed value. Broadcast to shape `(n_features,)` if
|
||
|
scalar. If array-like, expects shape `(n_features,)`, one min value for
|
||
|
each feature. The default is `-np.inf`.
|
||
|
|
||
|
.. versionchanged:: 0.23
|
||
|
Added support for array-like.
|
||
|
|
||
|
max_value : float or array-like of shape (n_features,), default=np.inf
|
||
|
Maximum possible imputed value. Broadcast to shape `(n_features,)` if
|
||
|
scalar. If array-like, expects shape `(n_features,)`, one max value for
|
||
|
each feature. The default is `np.inf`.
|
||
|
|
||
|
.. versionchanged:: 0.23
|
||
|
Added support for array-like.
|
||
|
|
||
|
verbose : int, default=0
|
||
|
Verbosity flag, controls the debug messages that are issued
|
||
|
as functions are evaluated. The higher, the more verbose. Can be 0, 1,
|
||
|
or 2.
|
||
|
|
||
|
random_state : int, RandomState instance or None, default=None
|
||
|
The seed of the pseudo random number generator to use. Randomizes
|
||
|
selection of estimator features if `n_nearest_features` is not `None`,
|
||
|
the `imputation_order` if `random`, and the sampling from posterior if
|
||
|
`sample_posterior=True`. Use an integer for determinism.
|
||
|
See :term:`the Glossary <random_state>`.
|
||
|
|
||
|
add_indicator : bool, default=False
|
||
|
If `True`, a :class:`MissingIndicator` transform will stack onto output
|
||
|
of the imputer's transform. This allows a predictive estimator
|
||
|
to account for missingness despite imputation. If a feature has no
|
||
|
missing values at fit/train time, the feature won't appear on
|
||
|
the missing indicator even if there are missing values at
|
||
|
transform/test time.
|
||
|
|
||
|
keep_empty_features : bool, default=False
|
||
|
If True, features that consist exclusively of missing values when
|
||
|
`fit` is called are returned in results when `transform` is called.
|
||
|
The imputed value is always `0` except when
|
||
|
`initial_strategy="constant"` in which case `fill_value` will be
|
||
|
used instead.
|
||
|
|
||
|
.. versionadded:: 1.2
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
initial_imputer_ : object of type :class:`~sklearn.impute.SimpleImputer`
|
||
|
Imputer used to initialize the missing values.
|
||
|
|
||
|
imputation_sequence_ : list of tuples
|
||
|
Each tuple has `(feat_idx, neighbor_feat_idx, estimator)`, where
|
||
|
`feat_idx` is the current feature to be imputed,
|
||
|
`neighbor_feat_idx` is the array of other features used to impute the
|
||
|
current feature, and `estimator` is the trained estimator used for
|
||
|
the imputation. Length is `self.n_features_with_missing_ *
|
||
|
self.n_iter_`.
|
||
|
|
||
|
n_iter_ : int
|
||
|
Number of iteration rounds that occurred. Will be less than
|
||
|
`self.max_iter` if early stopping criterion was reached.
|
||
|
|
||
|
n_features_in_ : int
|
||
|
Number of features seen during :term:`fit`.
|
||
|
|
||
|
.. versionadded:: 0.24
|
||
|
|
||
|
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
||
|
Names of features seen during :term:`fit`. Defined only when `X`
|
||
|
has feature names that are all strings.
|
||
|
|
||
|
.. versionadded:: 1.0
|
||
|
|
||
|
n_features_with_missing_ : int
|
||
|
Number of features with missing values.
|
||
|
|
||
|
indicator_ : :class:`~sklearn.impute.MissingIndicator`
|
||
|
Indicator used to add binary indicators for missing values.
|
||
|
`None` if `add_indicator=False`.
|
||
|
|
||
|
random_state_ : RandomState instance
|
||
|
RandomState instance that is generated either from a seed, the random
|
||
|
number generator or by `np.random`.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
SimpleImputer : Univariate imputer for completing missing values
|
||
|
with simple strategies.
|
||
|
KNNImputer : Multivariate imputer that estimates missing features using
|
||
|
nearest samples.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
To support imputation in inductive mode we store each feature's estimator
|
||
|
during the :meth:`fit` phase, and predict without refitting (in order)
|
||
|
during the :meth:`transform` phase.
|
||
|
|
||
|
Features which contain all missing values at :meth:`fit` are discarded upon
|
||
|
:meth:`transform`.
|
||
|
|
||
|
Using defaults, the imputer scales in :math:`\\mathcal{O}(knp^3\\min(n,p))`
|
||
|
where :math:`k` = `max_iter`, :math:`n` the number of samples and
|
||
|
:math:`p` the number of features. It thus becomes prohibitively costly when
|
||
|
the number of features increases. Setting
|
||
|
`n_nearest_features << n_features`, `skip_complete=True` or increasing `tol`
|
||
|
can help to reduce its computational cost.
|
||
|
|
||
|
Depending on the nature of missing values, simple imputers can be
|
||
|
preferable in a prediction context.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] `Stef van Buuren, Karin Groothuis-Oudshoorn (2011). "mice:
|
||
|
Multivariate Imputation by Chained Equations in R". Journal of
|
||
|
Statistical Software 45: 1-67.
|
||
|
<https://www.jstatsoft.org/article/view/v045i03>`_
|
||
|
|
||
|
.. [2] `S. F. Buck, (1960). "A Method of Estimation of Missing Values in
|
||
|
Multivariate Data Suitable for use with an Electronic Computer".
|
||
|
Journal of the Royal Statistical Society 22(2): 302-306.
|
||
|
<https://www.jstor.org/stable/2984099>`_
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from sklearn.experimental import enable_iterative_imputer
|
||
|
>>> from sklearn.impute import IterativeImputer
|
||
|
>>> imp_mean = IterativeImputer(random_state=0)
|
||
|
>>> imp_mean.fit([[7, 2, 3], [4, np.nan, 6], [10, 5, 9]])
|
||
|
IterativeImputer(random_state=0)
|
||
|
>>> X = [[np.nan, 2, 3], [4, np.nan, 6], [10, np.nan, 9]]
|
||
|
>>> imp_mean.transform(X)
|
||
|
array([[ 6.9584..., 2. , 3. ],
|
||
|
[ 4. , 2.6000..., 6. ],
|
||
|
[10. , 4.9999..., 9. ]])
|
||
|
"""
|
||
|
|
||
|
_parameter_constraints: dict = {
|
||
|
**_BaseImputer._parameter_constraints,
|
||
|
"estimator": [None, HasMethods(["fit", "predict"])],
|
||
|
"sample_posterior": ["boolean"],
|
||
|
"max_iter": [Interval(Integral, 0, None, closed="left")],
|
||
|
"tol": [Interval(Real, 0, None, closed="left")],
|
||
|
"n_nearest_features": [None, Interval(Integral, 1, None, closed="left")],
|
||
|
"initial_strategy": [
|
||
|
StrOptions({"mean", "median", "most_frequent", "constant"})
|
||
|
],
|
||
|
"imputation_order": [
|
||
|
StrOptions({"ascending", "descending", "roman", "arabic", "random"})
|
||
|
],
|
||
|
"skip_complete": ["boolean"],
|
||
|
"min_value": [None, Interval(Real, None, None, closed="both"), "array-like"],
|
||
|
"max_value": [None, Interval(Real, None, None, closed="both"), "array-like"],
|
||
|
"verbose": ["verbose"],
|
||
|
"random_state": ["random_state"],
|
||
|
}
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
estimator=None,
|
||
|
*,
|
||
|
missing_values=np.nan,
|
||
|
sample_posterior=False,
|
||
|
max_iter=10,
|
||
|
tol=1e-3,
|
||
|
n_nearest_features=None,
|
||
|
initial_strategy="mean",
|
||
|
imputation_order="ascending",
|
||
|
skip_complete=False,
|
||
|
min_value=-np.inf,
|
||
|
max_value=np.inf,
|
||
|
verbose=0,
|
||
|
random_state=None,
|
||
|
add_indicator=False,
|
||
|
keep_empty_features=False,
|
||
|
):
|
||
|
super().__init__(
|
||
|
missing_values=missing_values,
|
||
|
add_indicator=add_indicator,
|
||
|
keep_empty_features=keep_empty_features,
|
||
|
)
|
||
|
|
||
|
self.estimator = estimator
|
||
|
self.sample_posterior = sample_posterior
|
||
|
self.max_iter = max_iter
|
||
|
self.tol = tol
|
||
|
self.n_nearest_features = n_nearest_features
|
||
|
self.initial_strategy = initial_strategy
|
||
|
self.imputation_order = imputation_order
|
||
|
self.skip_complete = skip_complete
|
||
|
self.min_value = min_value
|
||
|
self.max_value = max_value
|
||
|
self.verbose = verbose
|
||
|
self.random_state = random_state
|
||
|
|
||
|
def _impute_one_feature(
|
||
|
self,
|
||
|
X_filled,
|
||
|
mask_missing_values,
|
||
|
feat_idx,
|
||
|
neighbor_feat_idx,
|
||
|
estimator=None,
|
||
|
fit_mode=True,
|
||
|
):
|
||
|
"""Impute a single feature from the others provided.
|
||
|
|
||
|
This function predicts the missing values of one of the features using
|
||
|
the current estimates of all the other features. The `estimator` must
|
||
|
support `return_std=True` in its `predict` method for this function
|
||
|
to work.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X_filled : ndarray
|
||
|
Input data with the most recent imputations.
|
||
|
|
||
|
mask_missing_values : ndarray
|
||
|
Input data's missing indicator matrix.
|
||
|
|
||
|
feat_idx : int
|
||
|
Index of the feature currently being imputed.
|
||
|
|
||
|
neighbor_feat_idx : ndarray
|
||
|
Indices of the features to be used in imputing `feat_idx`.
|
||
|
|
||
|
estimator : object
|
||
|
The estimator to use at this step of the round-robin imputation.
|
||
|
If `sample_posterior=True`, the estimator must support
|
||
|
`return_std` in its `predict` method.
|
||
|
If None, it will be cloned from self._estimator.
|
||
|
|
||
|
fit_mode : boolean, default=True
|
||
|
Whether to fit and predict with the estimator or just predict.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
X_filled : ndarray
|
||
|
Input data with `X_filled[missing_row_mask, feat_idx]` updated.
|
||
|
|
||
|
estimator : estimator with sklearn API
|
||
|
The fitted estimator used to impute
|
||
|
`X_filled[missing_row_mask, feat_idx]`.
|
||
|
"""
|
||
|
if estimator is None and fit_mode is False:
|
||
|
raise ValueError(
|
||
|
"If fit_mode is False, then an already-fitted "
|
||
|
"estimator should be passed in."
|
||
|
)
|
||
|
|
||
|
if estimator is None:
|
||
|
estimator = clone(self._estimator)
|
||
|
|
||
|
missing_row_mask = mask_missing_values[:, feat_idx]
|
||
|
if fit_mode:
|
||
|
X_train = _safe_indexing(
|
||
|
_safe_indexing(X_filled, neighbor_feat_idx, axis=1),
|
||
|
~missing_row_mask,
|
||
|
axis=0,
|
||
|
)
|
||
|
y_train = _safe_indexing(
|
||
|
_safe_indexing(X_filled, feat_idx, axis=1),
|
||
|
~missing_row_mask,
|
||
|
axis=0,
|
||
|
)
|
||
|
estimator.fit(X_train, y_train)
|
||
|
|
||
|
# if no missing values, don't predict
|
||
|
if np.sum(missing_row_mask) == 0:
|
||
|
return X_filled, estimator
|
||
|
|
||
|
# get posterior samples if there is at least one missing value
|
||
|
X_test = _safe_indexing(
|
||
|
_safe_indexing(X_filled, neighbor_feat_idx, axis=1),
|
||
|
missing_row_mask,
|
||
|
axis=0,
|
||
|
)
|
||
|
if self.sample_posterior:
|
||
|
mus, sigmas = estimator.predict(X_test, return_std=True)
|
||
|
imputed_values = np.zeros(mus.shape, dtype=X_filled.dtype)
|
||
|
# two types of problems: (1) non-positive sigmas
|
||
|
# (2) mus outside legal range of min_value and max_value
|
||
|
# (results in inf sample)
|
||
|
positive_sigmas = sigmas > 0
|
||
|
imputed_values[~positive_sigmas] = mus[~positive_sigmas]
|
||
|
mus_too_low = mus < self._min_value[feat_idx]
|
||
|
imputed_values[mus_too_low] = self._min_value[feat_idx]
|
||
|
mus_too_high = mus > self._max_value[feat_idx]
|
||
|
imputed_values[mus_too_high] = self._max_value[feat_idx]
|
||
|
# the rest can be sampled without statistical issues
|
||
|
inrange_mask = positive_sigmas & ~mus_too_low & ~mus_too_high
|
||
|
mus = mus[inrange_mask]
|
||
|
sigmas = sigmas[inrange_mask]
|
||
|
a = (self._min_value[feat_idx] - mus) / sigmas
|
||
|
b = (self._max_value[feat_idx] - mus) / sigmas
|
||
|
|
||
|
truncated_normal = stats.truncnorm(a=a, b=b, loc=mus, scale=sigmas)
|
||
|
imputed_values[inrange_mask] = truncated_normal.rvs(
|
||
|
random_state=self.random_state_
|
||
|
)
|
||
|
else:
|
||
|
imputed_values = estimator.predict(X_test)
|
||
|
imputed_values = np.clip(
|
||
|
imputed_values, self._min_value[feat_idx], self._max_value[feat_idx]
|
||
|
)
|
||
|
|
||
|
# update the feature
|
||
|
_safe_assign(
|
||
|
X_filled,
|
||
|
imputed_values,
|
||
|
row_indexer=missing_row_mask,
|
||
|
column_indexer=feat_idx,
|
||
|
)
|
||
|
return X_filled, estimator
|
||
|
|
||
|
def _get_neighbor_feat_idx(self, n_features, feat_idx, abs_corr_mat):
|
||
|
"""Get a list of other features to predict `feat_idx`.
|
||
|
|
||
|
If `self.n_nearest_features` is less than or equal to the total
|
||
|
number of features, then use a probability proportional to the absolute
|
||
|
correlation between `feat_idx` and each other feature to randomly
|
||
|
choose a subsample of the other features (without replacement).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n_features : int
|
||
|
Number of features in `X`.
|
||
|
|
||
|
feat_idx : int
|
||
|
Index of the feature currently being imputed.
|
||
|
|
||
|
abs_corr_mat : ndarray, shape (n_features, n_features)
|
||
|
Absolute correlation matrix of `X`. The diagonal has been zeroed
|
||
|
out and each feature has been normalized to sum to 1. Can be None.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
neighbor_feat_idx : array-like
|
||
|
The features to use to impute `feat_idx`.
|
||
|
"""
|
||
|
if self.n_nearest_features is not None and self.n_nearest_features < n_features:
|
||
|
p = abs_corr_mat[:, feat_idx]
|
||
|
neighbor_feat_idx = self.random_state_.choice(
|
||
|
np.arange(n_features), self.n_nearest_features, replace=False, p=p
|
||
|
)
|
||
|
else:
|
||
|
inds_left = np.arange(feat_idx)
|
||
|
inds_right = np.arange(feat_idx + 1, n_features)
|
||
|
neighbor_feat_idx = np.concatenate((inds_left, inds_right))
|
||
|
return neighbor_feat_idx
|
||
|
|
||
|
def _get_ordered_idx(self, mask_missing_values):
|
||
|
"""Decide in what order we will update the features.
|
||
|
|
||
|
As a homage to the MICE R package, we will have 4 main options of
|
||
|
how to order the updates, and use a random order if anything else
|
||
|
is specified.
|
||
|
|
||
|
Also, this function skips features which have no missing values.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
mask_missing_values : array-like, shape (n_samples, n_features)
|
||
|
Input data's missing indicator matrix, where `n_samples` is the
|
||
|
number of samples and `n_features` is the number of features.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ordered_idx : ndarray, shape (n_features,)
|
||
|
The order in which to impute the features.
|
||
|
"""
|
||
|
frac_of_missing_values = mask_missing_values.mean(axis=0)
|
||
|
if self.skip_complete:
|
||
|
missing_values_idx = np.flatnonzero(frac_of_missing_values)
|
||
|
else:
|
||
|
missing_values_idx = np.arange(np.shape(frac_of_missing_values)[0])
|
||
|
if self.imputation_order == "roman":
|
||
|
ordered_idx = missing_values_idx
|
||
|
elif self.imputation_order == "arabic":
|
||
|
ordered_idx = missing_values_idx[::-1]
|
||
|
elif self.imputation_order == "ascending":
|
||
|
n = len(frac_of_missing_values) - len(missing_values_idx)
|
||
|
ordered_idx = np.argsort(frac_of_missing_values, kind="mergesort")[n:]
|
||
|
elif self.imputation_order == "descending":
|
||
|
n = len(frac_of_missing_values) - len(missing_values_idx)
|
||
|
ordered_idx = np.argsort(frac_of_missing_values, kind="mergesort")[n:][::-1]
|
||
|
elif self.imputation_order == "random":
|
||
|
ordered_idx = missing_values_idx
|
||
|
self.random_state_.shuffle(ordered_idx)
|
||
|
return ordered_idx
|
||
|
|
||
|
def _get_abs_corr_mat(self, X_filled, tolerance=1e-6):
|
||
|
"""Get absolute correlation matrix between features.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X_filled : ndarray, shape (n_samples, n_features)
|
||
|
Input data with the most recent imputations.
|
||
|
|
||
|
tolerance : float, default=1e-6
|
||
|
`abs_corr_mat` can have nans, which will be replaced
|
||
|
with `tolerance`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
abs_corr_mat : ndarray, shape (n_features, n_features)
|
||
|
Absolute correlation matrix of `X` at the beginning of the
|
||
|
current round. The diagonal has been zeroed out and each feature's
|
||
|
absolute correlations with all others have been normalized to sum
|
||
|
to 1.
|
||
|
"""
|
||
|
n_features = X_filled.shape[1]
|
||
|
if self.n_nearest_features is None or self.n_nearest_features >= n_features:
|
||
|
return None
|
||
|
with np.errstate(invalid="ignore"):
|
||
|
# if a feature in the neighborhood has only a single value
|
||
|
# (e.g., categorical feature), the std. dev. will be null and
|
||
|
# np.corrcoef will raise a warning due to a division by zero
|
||
|
abs_corr_mat = np.abs(np.corrcoef(X_filled.T))
|
||
|
# np.corrcoef is not defined for features with zero std
|
||
|
abs_corr_mat[np.isnan(abs_corr_mat)] = tolerance
|
||
|
# ensures exploration, i.e. at least some probability of sampling
|
||
|
np.clip(abs_corr_mat, tolerance, None, out=abs_corr_mat)
|
||
|
# features are not their own neighbors
|
||
|
np.fill_diagonal(abs_corr_mat, 0)
|
||
|
# needs to sum to 1 for np.random.choice sampling
|
||
|
abs_corr_mat = normalize(abs_corr_mat, norm="l1", axis=0, copy=False)
|
||
|
return abs_corr_mat
|
||
|
|
||
|
def _initial_imputation(self, X, in_fit=False):
|
||
|
"""Perform initial imputation for input `X`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : ndarray of shape (n_samples, n_features)
|
||
|
Input data, where `n_samples` is the number of samples and
|
||
|
`n_features` is the number of features.
|
||
|
|
||
|
in_fit : bool, default=False
|
||
|
Whether function is called in :meth:`fit`.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Xt : ndarray of shape (n_samples, n_features)
|
||
|
Input data, where `n_samples` is the number of samples and
|
||
|
`n_features` is the number of features.
|
||
|
|
||
|
X_filled : ndarray of shape (n_samples, n_features)
|
||
|
Input data with the most recent imputations.
|
||
|
|
||
|
mask_missing_values : ndarray of shape (n_samples, n_features)
|
||
|
Input data's missing indicator matrix, where `n_samples` is the
|
||
|
number of samples and `n_features` is the number of features,
|
||
|
masked by non-missing features.
|
||
|
|
||
|
X_missing_mask : ndarray, shape (n_samples, n_features)
|
||
|
Input data's mask matrix indicating missing datapoints, where
|
||
|
`n_samples` is the number of samples and `n_features` is the
|
||
|
number of features.
|
||
|
"""
|
||
|
if is_scalar_nan(self.missing_values):
|
||
|
force_all_finite = "allow-nan"
|
||
|
else:
|
||
|
force_all_finite = True
|
||
|
|
||
|
X = self._validate_data(
|
||
|
X,
|
||
|
dtype=FLOAT_DTYPES,
|
||
|
order="F",
|
||
|
reset=in_fit,
|
||
|
force_all_finite=force_all_finite,
|
||
|
)
|
||
|
_check_inputs_dtype(X, self.missing_values)
|
||
|
|
||
|
X_missing_mask = _get_mask(X, self.missing_values)
|
||
|
mask_missing_values = X_missing_mask.copy()
|
||
|
if self.initial_imputer_ is None:
|
||
|
self.initial_imputer_ = SimpleImputer(
|
||
|
missing_values=self.missing_values,
|
||
|
strategy=self.initial_strategy,
|
||
|
keep_empty_features=self.keep_empty_features,
|
||
|
)
|
||
|
X_filled = self.initial_imputer_.fit_transform(X)
|
||
|
else:
|
||
|
X_filled = self.initial_imputer_.transform(X)
|
||
|
|
||
|
valid_mask = np.flatnonzero(
|
||
|
np.logical_not(np.isnan(self.initial_imputer_.statistics_))
|
||
|
)
|
||
|
|
||
|
if not self.keep_empty_features:
|
||
|
# drop empty features
|
||
|
Xt = X[:, valid_mask]
|
||
|
mask_missing_values = mask_missing_values[:, valid_mask]
|
||
|
else:
|
||
|
# mark empty features as not missing and keep the original
|
||
|
# imputation
|
||
|
mask_missing_values[:, valid_mask] = True
|
||
|
Xt = X
|
||
|
|
||
|
return Xt, X_filled, mask_missing_values, X_missing_mask
|
||
|
|
||
|
@staticmethod
|
||
|
def _validate_limit(limit, limit_type, n_features):
|
||
|
"""Validate the limits (min/max) of the feature values.
|
||
|
|
||
|
Converts scalar min/max limits to vectors of shape `(n_features,)`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
limit: scalar or array-like
|
||
|
The user-specified limit (i.e, min_value or max_value).
|
||
|
limit_type: {'max', 'min'}
|
||
|
Type of limit to validate.
|
||
|
n_features: int
|
||
|
Number of features in the dataset.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
limit: ndarray, shape(n_features,)
|
||
|
Array of limits, one for each feature.
|
||
|
"""
|
||
|
limit_bound = np.inf if limit_type == "max" else -np.inf
|
||
|
limit = limit_bound if limit is None else limit
|
||
|
if np.isscalar(limit):
|
||
|
limit = np.full(n_features, limit)
|
||
|
limit = check_array(limit, force_all_finite=False, copy=False, ensure_2d=False)
|
||
|
if not limit.shape[0] == n_features:
|
||
|
raise ValueError(
|
||
|
f"'{limit_type}_value' should be of "
|
||
|
f"shape ({n_features},) when an array-like "
|
||
|
f"is provided. Got {limit.shape}, instead."
|
||
|
)
|
||
|
return limit
|
||
|
|
||
|
def fit_transform(self, X, y=None):
|
||
|
"""Fit the imputer on `X` and return the transformed `X`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like, shape (n_samples, n_features)
|
||
|
Input data, where `n_samples` is the number of samples and
|
||
|
`n_features` is the number of features.
|
||
|
|
||
|
y : Ignored
|
||
|
Not used, present for API consistency by convention.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Xt : array-like, shape (n_samples, n_features)
|
||
|
The imputed input data.
|
||
|
"""
|
||
|
self._validate_params()
|
||
|
self.random_state_ = getattr(
|
||
|
self, "random_state_", check_random_state(self.random_state)
|
||
|
)
|
||
|
|
||
|
if self.estimator is None:
|
||
|
from ..linear_model import BayesianRidge
|
||
|
|
||
|
self._estimator = BayesianRidge()
|
||
|
else:
|
||
|
self._estimator = clone(self.estimator)
|
||
|
|
||
|
self.imputation_sequence_ = []
|
||
|
|
||
|
self.initial_imputer_ = None
|
||
|
|
||
|
X, Xt, mask_missing_values, complete_mask = self._initial_imputation(
|
||
|
X, in_fit=True
|
||
|
)
|
||
|
|
||
|
super()._fit_indicator(complete_mask)
|
||
|
X_indicator = super()._transform_indicator(complete_mask)
|
||
|
|
||
|
if self.max_iter == 0 or np.all(mask_missing_values):
|
||
|
self.n_iter_ = 0
|
||
|
return super()._concatenate_indicator(Xt, X_indicator)
|
||
|
|
||
|
# Edge case: a single feature. We return the initial ...
|
||
|
if Xt.shape[1] == 1:
|
||
|
self.n_iter_ = 0
|
||
|
return super()._concatenate_indicator(Xt, X_indicator)
|
||
|
|
||
|
self._min_value = self._validate_limit(self.min_value, "min", X.shape[1])
|
||
|
self._max_value = self._validate_limit(self.max_value, "max", X.shape[1])
|
||
|
|
||
|
if not np.all(np.greater(self._max_value, self._min_value)):
|
||
|
raise ValueError("One (or more) features have min_value >= max_value.")
|
||
|
|
||
|
# order in which to impute
|
||
|
# note this is probably too slow for large feature data (d > 100000)
|
||
|
# and a better way would be good.
|
||
|
# see: https://goo.gl/KyCNwj and subsequent comments
|
||
|
ordered_idx = self._get_ordered_idx(mask_missing_values)
|
||
|
self.n_features_with_missing_ = len(ordered_idx)
|
||
|
|
||
|
abs_corr_mat = self._get_abs_corr_mat(Xt)
|
||
|
|
||
|
n_samples, n_features = Xt.shape
|
||
|
if self.verbose > 0:
|
||
|
print("[IterativeImputer] Completing matrix with shape %s" % (X.shape,))
|
||
|
start_t = time()
|
||
|
if not self.sample_posterior:
|
||
|
Xt_previous = Xt.copy()
|
||
|
normalized_tol = self.tol * np.max(np.abs(X[~mask_missing_values]))
|
||
|
for self.n_iter_ in range(1, self.max_iter + 1):
|
||
|
if self.imputation_order == "random":
|
||
|
ordered_idx = self._get_ordered_idx(mask_missing_values)
|
||
|
|
||
|
for feat_idx in ordered_idx:
|
||
|
neighbor_feat_idx = self._get_neighbor_feat_idx(
|
||
|
n_features, feat_idx, abs_corr_mat
|
||
|
)
|
||
|
Xt, estimator = self._impute_one_feature(
|
||
|
Xt,
|
||
|
mask_missing_values,
|
||
|
feat_idx,
|
||
|
neighbor_feat_idx,
|
||
|
estimator=None,
|
||
|
fit_mode=True,
|
||
|
)
|
||
|
estimator_triplet = _ImputerTriplet(
|
||
|
feat_idx, neighbor_feat_idx, estimator
|
||
|
)
|
||
|
self.imputation_sequence_.append(estimator_triplet)
|
||
|
|
||
|
if self.verbose > 1:
|
||
|
print(
|
||
|
"[IterativeImputer] Ending imputation round "
|
||
|
"%d/%d, elapsed time %0.2f"
|
||
|
% (self.n_iter_, self.max_iter, time() - start_t)
|
||
|
)
|
||
|
|
||
|
if not self.sample_posterior:
|
||
|
inf_norm = np.linalg.norm(Xt - Xt_previous, ord=np.inf, axis=None)
|
||
|
if self.verbose > 0:
|
||
|
print(
|
||
|
"[IterativeImputer] Change: {}, scaled tolerance: {} ".format(
|
||
|
inf_norm, normalized_tol
|
||
|
)
|
||
|
)
|
||
|
if inf_norm < normalized_tol:
|
||
|
if self.verbose > 0:
|
||
|
print("[IterativeImputer] Early stopping criterion reached.")
|
||
|
break
|
||
|
Xt_previous = Xt.copy()
|
||
|
else:
|
||
|
if not self.sample_posterior:
|
||
|
warnings.warn(
|
||
|
"[IterativeImputer] Early stopping criterion not reached.",
|
||
|
ConvergenceWarning,
|
||
|
)
|
||
|
_assign_where(Xt, X, cond=~mask_missing_values)
|
||
|
|
||
|
return super()._concatenate_indicator(Xt, X_indicator)
|
||
|
|
||
|
def transform(self, X):
|
||
|
"""Impute all missing values in `X`.
|
||
|
|
||
|
Note that this is stochastic, and that if `random_state` is not fixed,
|
||
|
repeated calls, or permuted input, results will differ.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like of shape (n_samples, n_features)
|
||
|
The input data to complete.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Xt : array-like, shape (n_samples, n_features)
|
||
|
The imputed input data.
|
||
|
"""
|
||
|
check_is_fitted(self)
|
||
|
|
||
|
X, Xt, mask_missing_values, complete_mask = self._initial_imputation(
|
||
|
X, in_fit=False
|
||
|
)
|
||
|
|
||
|
X_indicator = super()._transform_indicator(complete_mask)
|
||
|
|
||
|
if self.n_iter_ == 0 or np.all(mask_missing_values):
|
||
|
return super()._concatenate_indicator(Xt, X_indicator)
|
||
|
|
||
|
imputations_per_round = len(self.imputation_sequence_) // self.n_iter_
|
||
|
i_rnd = 0
|
||
|
if self.verbose > 0:
|
||
|
print("[IterativeImputer] Completing matrix with shape %s" % (X.shape,))
|
||
|
start_t = time()
|
||
|
for it, estimator_triplet in enumerate(self.imputation_sequence_):
|
||
|
Xt, _ = self._impute_one_feature(
|
||
|
Xt,
|
||
|
mask_missing_values,
|
||
|
estimator_triplet.feat_idx,
|
||
|
estimator_triplet.neighbor_feat_idx,
|
||
|
estimator=estimator_triplet.estimator,
|
||
|
fit_mode=False,
|
||
|
)
|
||
|
if not (it + 1) % imputations_per_round:
|
||
|
if self.verbose > 1:
|
||
|
print(
|
||
|
"[IterativeImputer] Ending imputation round "
|
||
|
"%d/%d, elapsed time %0.2f"
|
||
|
% (i_rnd + 1, self.n_iter_, time() - start_t)
|
||
|
)
|
||
|
i_rnd += 1
|
||
|
|
||
|
_assign_where(Xt, X, cond=~mask_missing_values)
|
||
|
|
||
|
return super()._concatenate_indicator(Xt, X_indicator)
|
||
|
|
||
|
def fit(self, X, y=None):
|
||
|
"""Fit the imputer on `X` and return self.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like, shape (n_samples, n_features)
|
||
|
Input data, where `n_samples` is the number of samples and
|
||
|
`n_features` is the number of features.
|
||
|
|
||
|
y : Ignored
|
||
|
Not used, present for API consistency by convention.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
Fitted estimator.
|
||
|
"""
|
||
|
self.fit_transform(X)
|
||
|
return self
|
||
|
|
||
|
def get_feature_names_out(self, input_features=None):
|
||
|
"""Get output feature names for transformation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
input_features : array-like of str or None, default=None
|
||
|
Input features.
|
||
|
|
||
|
- If `input_features` is `None`, then `feature_names_in_` is
|
||
|
used as feature names in. If `feature_names_in_` is not defined,
|
||
|
then the following input feature names are generated:
|
||
|
`["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
|
||
|
- If `input_features` is an array-like, then `input_features` must
|
||
|
match `feature_names_in_` if `feature_names_in_` is defined.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
feature_names_out : ndarray of str objects
|
||
|
Transformed feature names.
|
||
|
"""
|
||
|
input_features = _check_feature_names_in(self, input_features)
|
||
|
names = self.initial_imputer_.get_feature_names_out(input_features)
|
||
|
return self._concatenate_indicator_feature_names_out(names, input_features)
|