Intelegentny_Pszczelarz/.venv/Lib/site-packages/sklearn/preprocessing/tests/test_polynomial.py

819 lines
25 KiB
Python
Raw Normal View History

2023-06-19 00:49:18 +02:00
import numpy as np
import pytest
from scipy import sparse
from scipy.sparse import random as sparse_random
from sklearn.utils._testing import assert_array_almost_equal
from numpy.testing import assert_allclose, assert_array_equal
from scipy.interpolate import BSpline
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import (
KBinsDiscretizer,
PolynomialFeatures,
SplineTransformer,
)
@pytest.mark.parametrize("est", (PolynomialFeatures, SplineTransformer))
def test_polynomial_and_spline_array_order(est):
"""Test that output array has the given order."""
X = np.arange(10).reshape(5, 2)
def is_c_contiguous(a):
return np.isfortran(a.T)
assert is_c_contiguous(est().fit_transform(X))
assert is_c_contiguous(est(order="C").fit_transform(X))
assert np.isfortran(est(order="F").fit_transform(X))
@pytest.mark.parametrize("extrapolation", ["continue", "periodic"])
def test_spline_transformer_integer_knots(extrapolation):
"""Test that SplineTransformer accepts integer value knot positions."""
X = np.arange(20).reshape(10, 2)
knots = [[0, 1], [1, 2], [5, 5], [11, 10], [12, 11]]
_ = SplineTransformer(
degree=3, knots=knots, extrapolation=extrapolation
).fit_transform(X)
def test_spline_transformer_feature_names():
"""Test that SplineTransformer generates correct features name."""
X = np.arange(20).reshape(10, 2)
splt = SplineTransformer(n_knots=3, degree=3, include_bias=True).fit(X)
feature_names = splt.get_feature_names_out()
assert_array_equal(
feature_names,
[
"x0_sp_0",
"x0_sp_1",
"x0_sp_2",
"x0_sp_3",
"x0_sp_4",
"x1_sp_0",
"x1_sp_1",
"x1_sp_2",
"x1_sp_3",
"x1_sp_4",
],
)
splt = SplineTransformer(n_knots=3, degree=3, include_bias=False).fit(X)
feature_names = splt.get_feature_names_out(["a", "b"])
assert_array_equal(
feature_names,
[
"a_sp_0",
"a_sp_1",
"a_sp_2",
"a_sp_3",
"b_sp_0",
"b_sp_1",
"b_sp_2",
"b_sp_3",
],
)
@pytest.mark.parametrize(
"extrapolation",
["constant", "linear", "continue", "periodic"],
)
@pytest.mark.parametrize("degree", [2, 3])
def test_split_transform_feature_names_extrapolation_degree(extrapolation, degree):
"""Test feature names are correct for different extrapolations and degree.
Non-regression test for gh-25292.
"""
X = np.arange(20).reshape(10, 2)
splt = SplineTransformer(degree=degree, extrapolation=extrapolation).fit(X)
feature_names = splt.get_feature_names_out(["a", "b"])
assert len(feature_names) == splt.n_features_out_
X_trans = splt.transform(X)
assert X_trans.shape[1] == len(feature_names)
@pytest.mark.parametrize("degree", range(1, 5))
@pytest.mark.parametrize("n_knots", range(3, 5))
@pytest.mark.parametrize("knots", ["uniform", "quantile"])
@pytest.mark.parametrize("extrapolation", ["constant", "periodic"])
def test_spline_transformer_unity_decomposition(degree, n_knots, knots, extrapolation):
"""Test that B-splines are indeed a decomposition of unity.
Splines basis functions must sum up to 1 per row, if we stay in between
boundaries.
"""
X = np.linspace(0, 1, 100)[:, None]
# make the boundaries 0 and 1 part of X_train, for sure.
X_train = np.r_[[[0]], X[::2, :], [[1]]]
X_test = X[1::2, :]
if extrapolation == "periodic":
n_knots = n_knots + degree # periodic splines require degree < n_knots
splt = SplineTransformer(
n_knots=n_knots,
degree=degree,
knots=knots,
include_bias=True,
extrapolation=extrapolation,
)
splt.fit(X_train)
for X in [X_train, X_test]:
assert_allclose(np.sum(splt.transform(X), axis=1), 1)
@pytest.mark.parametrize(["bias", "intercept"], [(True, False), (False, True)])
def test_spline_transformer_linear_regression(bias, intercept):
"""Test that B-splines fit a sinusodial curve pretty well."""
X = np.linspace(0, 10, 100)[:, None]
y = np.sin(X[:, 0]) + 2 # +2 to avoid the value 0 in assert_allclose
pipe = Pipeline(
steps=[
(
"spline",
SplineTransformer(
n_knots=15,
degree=3,
include_bias=bias,
extrapolation="constant",
),
),
("ols", LinearRegression(fit_intercept=intercept)),
]
)
pipe.fit(X, y)
assert_allclose(pipe.predict(X), y, rtol=1e-3)
@pytest.mark.parametrize(
["knots", "n_knots", "sample_weight", "expected_knots"],
[
("uniform", 3, None, np.array([[0, 2], [3, 8], [6, 14]])),
(
"uniform",
3,
np.array([0, 0, 1, 1, 0, 3, 1]),
np.array([[2, 2], [4, 8], [6, 14]]),
),
("uniform", 4, None, np.array([[0, 2], [2, 6], [4, 10], [6, 14]])),
("quantile", 3, None, np.array([[0, 2], [3, 3], [6, 14]])),
(
"quantile",
3,
np.array([0, 0, 1, 1, 0, 3, 1]),
np.array([[2, 2], [5, 8], [6, 14]]),
),
],
)
def test_spline_transformer_get_base_knot_positions(
knots, n_knots, sample_weight, expected_knots
):
# Check the behaviour to find the positions of the knots with and without
# `sample_weight`
X = np.array([[0, 2], [0, 2], [2, 2], [3, 3], [4, 6], [5, 8], [6, 14]])
base_knots = SplineTransformer._get_base_knot_positions(
X=X, knots=knots, n_knots=n_knots, sample_weight=sample_weight
)
assert_allclose(base_knots, expected_knots)
@pytest.mark.parametrize(["bias", "intercept"], [(True, False), (False, True)])
def test_spline_transformer_periodic_linear_regression(bias, intercept):
"""Test that B-splines fit a periodic curve pretty well."""
# "+ 3" to avoid the value 0 in assert_allclose
def f(x):
return np.sin(2 * np.pi * x) - np.sin(8 * np.pi * x) + 3
X = np.linspace(0, 1, 101)[:, None]
pipe = Pipeline(
steps=[
(
"spline",
SplineTransformer(
n_knots=20,
degree=3,
include_bias=bias,
extrapolation="periodic",
),
),
("ols", LinearRegression(fit_intercept=intercept)),
]
)
pipe.fit(X, f(X[:, 0]))
# Generate larger array to check periodic extrapolation
X_ = np.linspace(-1, 2, 301)[:, None]
predictions = pipe.predict(X_)
assert_allclose(predictions, f(X_[:, 0]), atol=0.01, rtol=0.01)
assert_allclose(predictions[0:100], predictions[100:200], rtol=1e-3)
def test_spline_transformer_periodic_spline_backport():
"""Test that the backport of extrapolate="periodic" works correctly"""
X = np.linspace(-2, 3.5, 10)[:, None]
degree = 2
# Use periodic extrapolation backport in SplineTransformer
transformer = SplineTransformer(
degree=degree, extrapolation="periodic", knots=[[-1.0], [0.0], [1.0]]
)
Xt = transformer.fit_transform(X)
# Use periodic extrapolation in BSpline
coef = np.array([[1.0, 0.0], [0.0, 1.0], [1.0, 0.0], [0.0, 1.0]])
spl = BSpline(np.arange(-3, 4), coef, degree, "periodic")
Xspl = spl(X[:, 0])
assert_allclose(Xt, Xspl)
def test_spline_transformer_periodic_splines_periodicity():
"""
Test if shifted knots result in the same transformation up to permutation.
"""
X = np.linspace(0, 10, 101)[:, None]
transformer_1 = SplineTransformer(
degree=3,
extrapolation="periodic",
knots=[[0.0], [1.0], [3.0], [4.0], [5.0], [8.0]],
)
transformer_2 = SplineTransformer(
degree=3,
extrapolation="periodic",
knots=[[1.0], [3.0], [4.0], [5.0], [8.0], [9.0]],
)
Xt_1 = transformer_1.fit_transform(X)
Xt_2 = transformer_2.fit_transform(X)
assert_allclose(Xt_1, Xt_2[:, [4, 0, 1, 2, 3]])
@pytest.mark.parametrize("degree", [3, 5])
def test_spline_transformer_periodic_splines_smoothness(degree):
"""Test that spline transformation is smooth at first / last knot."""
X = np.linspace(-2, 10, 10_000)[:, None]
transformer = SplineTransformer(
degree=degree,
extrapolation="periodic",
knots=[[0.0], [1.0], [3.0], [4.0], [5.0], [8.0]],
)
Xt = transformer.fit_transform(X)
delta = (X.max() - X.min()) / len(X)
tol = 10 * delta
dXt = Xt
# We expect splines of degree `degree` to be (`degree`-1) times
# continuously differentiable. I.e. for d = 0, ..., `degree` - 1 the d-th
# derivative should be continuous. This is the case if the (d+1)-th
# numerical derivative is reasonably small (smaller than `tol` in absolute
# value). We thus compute d-th numeric derivatives for d = 1, ..., `degree`
# and compare them to `tol`.
#
# Note that the 0-th derivative is the function itself, such that we are
# also checking its continuity.
for d in range(1, degree + 1):
# Check continuity of the (d-1)-th derivative
diff = np.diff(dXt, axis=0)
assert np.abs(diff).max() < tol
# Compute d-th numeric derivative
dXt = diff / delta
# As degree `degree` splines are not `degree` times continuously
# differentiable at the knots, the `degree + 1`-th numeric derivative
# should have spikes at the knots.
diff = np.diff(dXt, axis=0)
assert np.abs(diff).max() > 1
@pytest.mark.parametrize(["bias", "intercept"], [(True, False), (False, True)])
@pytest.mark.parametrize("degree", [1, 2, 3, 4, 5])
def test_spline_transformer_extrapolation(bias, intercept, degree):
"""Test that B-spline extrapolation works correctly."""
# we use a straight line for that
X = np.linspace(-1, 1, 100)[:, None]
y = X.squeeze()
# 'constant'
pipe = Pipeline(
[
[
"spline",
SplineTransformer(
n_knots=4,
degree=degree,
include_bias=bias,
extrapolation="constant",
),
],
["ols", LinearRegression(fit_intercept=intercept)],
]
)
pipe.fit(X, y)
assert_allclose(pipe.predict([[-10], [5]]), [-1, 1])
# 'linear'
pipe = Pipeline(
[
[
"spline",
SplineTransformer(
n_knots=4,
degree=degree,
include_bias=bias,
extrapolation="linear",
),
],
["ols", LinearRegression(fit_intercept=intercept)],
]
)
pipe.fit(X, y)
assert_allclose(pipe.predict([[-10], [5]]), [-10, 5])
# 'error'
splt = SplineTransformer(
n_knots=4, degree=degree, include_bias=bias, extrapolation="error"
)
splt.fit(X)
with pytest.raises(ValueError):
splt.transform([[-10]])
with pytest.raises(ValueError):
splt.transform([[5]])
def test_spline_transformer_kbindiscretizer():
"""Test that a B-spline of degree=0 is equivalent to KBinsDiscretizer."""
rng = np.random.RandomState(97531)
X = rng.randn(200).reshape(200, 1)
n_bins = 5
n_knots = n_bins + 1
splt = SplineTransformer(
n_knots=n_knots, degree=0, knots="quantile", include_bias=True
)
splines = splt.fit_transform(X)
kbd = KBinsDiscretizer(n_bins=n_bins, encode="onehot-dense", strategy="quantile")
kbins = kbd.fit_transform(X)
# Though they should be exactly equal, we test approximately with high
# accuracy.
assert_allclose(splines, kbins, rtol=1e-13)
@pytest.mark.parametrize("n_knots", [5, 10])
@pytest.mark.parametrize("include_bias", [True, False])
@pytest.mark.parametrize("degree", [3, 5])
def test_spline_transformer_n_features_out(n_knots, include_bias, degree):
"""Test that transform results in n_features_out_ features."""
splt = SplineTransformer(n_knots=n_knots, degree=degree, include_bias=include_bias)
X = np.linspace(0, 1, 10)[:, None]
splt.fit(X)
assert splt.transform(X).shape[1] == splt.n_features_out_
@pytest.mark.parametrize(
"params, err_msg",
[
({"degree": (-1, 2)}, r"degree=\(min_degree, max_degree\) must"),
({"degree": (0, 1.5)}, r"degree=\(min_degree, max_degree\) must"),
({"degree": (3, 2)}, r"degree=\(min_degree, max_degree\) must"),
({"degree": (1, 2, 3)}, r"int or tuple \(min_degree, max_degree\)"),
],
)
def test_polynomial_features_input_validation(params, err_msg):
"""Test that we raise errors for invalid input in PolynomialFeatures."""
X = [[1], [2]]
with pytest.raises(ValueError, match=err_msg):
PolynomialFeatures(**params).fit(X)
@pytest.fixture()
def single_feature_degree3():
X = np.arange(6)[:, np.newaxis]
P = np.hstack([np.ones_like(X), X, X**2, X**3])
return X, P
@pytest.mark.parametrize(
"degree, include_bias, interaction_only, indices",
[
(3, True, False, slice(None, None)),
(3, False, False, slice(1, None)),
(3, True, True, [0, 1]),
(3, False, True, [1]),
((2, 3), True, False, [0, 2, 3]),
((2, 3), False, False, [2, 3]),
((2, 3), True, True, [0]),
((2, 3), False, True, []),
],
)
@pytest.mark.parametrize(
"sparse_X",
[False, sparse.csr_matrix, sparse.csc_matrix],
)
def test_polynomial_features_one_feature(
single_feature_degree3,
degree,
include_bias,
interaction_only,
indices,
sparse_X,
):
"""Test PolynomialFeatures on single feature up to degree 3."""
X, P = single_feature_degree3
if sparse_X:
X = sparse_X(X)
tf = PolynomialFeatures(
degree=degree, include_bias=include_bias, interaction_only=interaction_only
).fit(X)
out = tf.transform(X)
if sparse_X:
out = out.toarray()
assert_allclose(out, P[:, indices])
if tf.n_output_features_ > 0:
assert tf.powers_.shape == (tf.n_output_features_, tf.n_features_in_)
@pytest.fixture()
def two_features_degree3():
X = np.arange(6).reshape((3, 2))
x1 = X[:, :1]
x2 = X[:, 1:]
P = np.hstack(
[
x1**0 * x2**0, # 0
x1**1 * x2**0, # 1
x1**0 * x2**1, # 2
x1**2 * x2**0, # 3
x1**1 * x2**1, # 4
x1**0 * x2**2, # 5
x1**3 * x2**0, # 6
x1**2 * x2**1, # 7
x1**1 * x2**2, # 8
x1**0 * x2**3, # 9
]
)
return X, P
@pytest.mark.parametrize(
"degree, include_bias, interaction_only, indices",
[
(2, True, False, slice(0, 6)),
(2, False, False, slice(1, 6)),
(2, True, True, [0, 1, 2, 4]),
(2, False, True, [1, 2, 4]),
((2, 2), True, False, [0, 3, 4, 5]),
((2, 2), False, False, [3, 4, 5]),
((2, 2), True, True, [0, 4]),
((2, 2), False, True, [4]),
(3, True, False, slice(None, None)),
(3, False, False, slice(1, None)),
(3, True, True, [0, 1, 2, 4]),
(3, False, True, [1, 2, 4]),
((2, 3), True, False, [0, 3, 4, 5, 6, 7, 8, 9]),
((2, 3), False, False, slice(3, None)),
((2, 3), True, True, [0, 4]),
((2, 3), False, True, [4]),
((3, 3), True, False, [0, 6, 7, 8, 9]),
((3, 3), False, False, [6, 7, 8, 9]),
((3, 3), True, True, [0]),
((3, 3), False, True, []), # would need 3 input features
],
)
@pytest.mark.parametrize(
"sparse_X",
[False, sparse.csr_matrix, sparse.csc_matrix],
)
def test_polynomial_features_two_features(
two_features_degree3,
degree,
include_bias,
interaction_only,
indices,
sparse_X,
):
"""Test PolynomialFeatures on 2 features up to degree 3."""
X, P = two_features_degree3
if sparse_X:
X = sparse_X(X)
tf = PolynomialFeatures(
degree=degree, include_bias=include_bias, interaction_only=interaction_only
).fit(X)
out = tf.transform(X)
if sparse_X:
out = out.toarray()
assert_allclose(out, P[:, indices])
if tf.n_output_features_ > 0:
assert tf.powers_.shape == (tf.n_output_features_, tf.n_features_in_)
def test_polynomial_feature_names():
X = np.arange(30).reshape(10, 3)
poly = PolynomialFeatures(degree=2, include_bias=True).fit(X)
feature_names = poly.get_feature_names_out()
assert_array_equal(
["1", "x0", "x1", "x2", "x0^2", "x0 x1", "x0 x2", "x1^2", "x1 x2", "x2^2"],
feature_names,
)
assert len(feature_names) == poly.transform(X).shape[1]
poly = PolynomialFeatures(degree=3, include_bias=False).fit(X)
feature_names = poly.get_feature_names_out(["a", "b", "c"])
assert_array_equal(
[
"a",
"b",
"c",
"a^2",
"a b",
"a c",
"b^2",
"b c",
"c^2",
"a^3",
"a^2 b",
"a^2 c",
"a b^2",
"a b c",
"a c^2",
"b^3",
"b^2 c",
"b c^2",
"c^3",
],
feature_names,
)
assert len(feature_names) == poly.transform(X).shape[1]
poly = PolynomialFeatures(degree=(2, 3), include_bias=False).fit(X)
feature_names = poly.get_feature_names_out(["a", "b", "c"])
assert_array_equal(
[
"a^2",
"a b",
"a c",
"b^2",
"b c",
"c^2",
"a^3",
"a^2 b",
"a^2 c",
"a b^2",
"a b c",
"a c^2",
"b^3",
"b^2 c",
"b c^2",
"c^3",
],
feature_names,
)
assert len(feature_names) == poly.transform(X).shape[1]
poly = PolynomialFeatures(
degree=(3, 3), include_bias=True, interaction_only=True
).fit(X)
feature_names = poly.get_feature_names_out(["a", "b", "c"])
assert_array_equal(["1", "a b c"], feature_names)
assert len(feature_names) == poly.transform(X).shape[1]
# test some unicode
poly = PolynomialFeatures(degree=1, include_bias=True).fit(X)
feature_names = poly.get_feature_names_out(["\u0001F40D", "\u262E", "\u05D0"])
assert_array_equal(["1", "\u0001F40D", "\u262E", "\u05D0"], feature_names)
@pytest.mark.parametrize(
["deg", "include_bias", "interaction_only", "dtype"],
[
(1, True, False, int),
(2, True, False, int),
(2, True, False, np.float32),
(2, True, False, np.float64),
(3, False, False, np.float64),
(3, False, True, np.float64),
(4, False, False, np.float64),
(4, False, True, np.float64),
],
)
def test_polynomial_features_csc_X(deg, include_bias, interaction_only, dtype):
rng = np.random.RandomState(0)
X = rng.randint(0, 2, (100, 2))
X_csc = sparse.csc_matrix(X)
est = PolynomialFeatures(
deg, include_bias=include_bias, interaction_only=interaction_only
)
Xt_csc = est.fit_transform(X_csc.astype(dtype))
Xt_dense = est.fit_transform(X.astype(dtype))
assert isinstance(Xt_csc, sparse.csc_matrix)
assert Xt_csc.dtype == Xt_dense.dtype
assert_array_almost_equal(Xt_csc.A, Xt_dense)
@pytest.mark.parametrize(
["deg", "include_bias", "interaction_only", "dtype"],
[
(1, True, False, int),
(2, True, False, int),
(2, True, False, np.float32),
(2, True, False, np.float64),
(3, False, False, np.float64),
(3, False, True, np.float64),
],
)
def test_polynomial_features_csr_X(deg, include_bias, interaction_only, dtype):
rng = np.random.RandomState(0)
X = rng.randint(0, 2, (100, 2))
X_csr = sparse.csr_matrix(X)
est = PolynomialFeatures(
deg, include_bias=include_bias, interaction_only=interaction_only
)
Xt_csr = est.fit_transform(X_csr.astype(dtype))
Xt_dense = est.fit_transform(X.astype(dtype, copy=False))
assert isinstance(Xt_csr, sparse.csr_matrix)
assert Xt_csr.dtype == Xt_dense.dtype
assert_array_almost_equal(Xt_csr.A, Xt_dense)
@pytest.mark.parametrize("n_features", [1, 4, 5])
@pytest.mark.parametrize(
"min_degree, max_degree", [(0, 1), (0, 2), (1, 3), (0, 4), (3, 4)]
)
@pytest.mark.parametrize("interaction_only", [True, False])
@pytest.mark.parametrize("include_bias", [True, False])
def test_num_combinations(
n_features,
min_degree,
max_degree,
interaction_only,
include_bias,
):
"""
Test that n_output_features_ is calculated correctly.
"""
x = sparse.csr_matrix(([1], ([0], [n_features - 1])))
est = PolynomialFeatures(
degree=max_degree,
interaction_only=interaction_only,
include_bias=include_bias,
)
est.fit(x)
num_combos = est.n_output_features_
combos = PolynomialFeatures._combinations(
n_features=n_features,
min_degree=0,
max_degree=max_degree,
interaction_only=interaction_only,
include_bias=include_bias,
)
assert num_combos == sum([1 for _ in combos])
@pytest.mark.parametrize(
["deg", "include_bias", "interaction_only", "dtype"],
[
(2, True, False, np.float32),
(2, True, False, np.float64),
(3, False, False, np.float64),
(3, False, True, np.float64),
],
)
def test_polynomial_features_csr_X_floats(deg, include_bias, interaction_only, dtype):
X_csr = sparse_random(1000, 10, 0.5, random_state=0).tocsr()
X = X_csr.toarray()
est = PolynomialFeatures(
deg, include_bias=include_bias, interaction_only=interaction_only
)
Xt_csr = est.fit_transform(X_csr.astype(dtype))
Xt_dense = est.fit_transform(X.astype(dtype))
assert isinstance(Xt_csr, sparse.csr_matrix)
assert Xt_csr.dtype == Xt_dense.dtype
assert_array_almost_equal(Xt_csr.A, Xt_dense)
@pytest.mark.parametrize(
["zero_row_index", "deg", "interaction_only"],
[
(0, 2, True),
(1, 2, True),
(2, 2, True),
(0, 3, True),
(1, 3, True),
(2, 3, True),
(0, 2, False),
(1, 2, False),
(2, 2, False),
(0, 3, False),
(1, 3, False),
(2, 3, False),
],
)
def test_polynomial_features_csr_X_zero_row(zero_row_index, deg, interaction_only):
X_csr = sparse_random(3, 10, 1.0, random_state=0).tocsr()
X_csr[zero_row_index, :] = 0.0
X = X_csr.toarray()
est = PolynomialFeatures(deg, include_bias=False, interaction_only=interaction_only)
Xt_csr = est.fit_transform(X_csr)
Xt_dense = est.fit_transform(X)
assert isinstance(Xt_csr, sparse.csr_matrix)
assert Xt_csr.dtype == Xt_dense.dtype
assert_array_almost_equal(Xt_csr.A, Xt_dense)
# This degree should always be one more than the highest degree supported by
# _csr_expansion.
@pytest.mark.parametrize(
["include_bias", "interaction_only"],
[(True, True), (True, False), (False, True), (False, False)],
)
def test_polynomial_features_csr_X_degree_4(include_bias, interaction_only):
X_csr = sparse_random(1000, 10, 0.5, random_state=0).tocsr()
X = X_csr.toarray()
est = PolynomialFeatures(
4, include_bias=include_bias, interaction_only=interaction_only
)
Xt_csr = est.fit_transform(X_csr)
Xt_dense = est.fit_transform(X)
assert isinstance(Xt_csr, sparse.csr_matrix)
assert Xt_csr.dtype == Xt_dense.dtype
assert_array_almost_equal(Xt_csr.A, Xt_dense)
@pytest.mark.parametrize(
["deg", "dim", "interaction_only"],
[
(2, 1, True),
(2, 2, True),
(3, 1, True),
(3, 2, True),
(3, 3, True),
(2, 1, False),
(2, 2, False),
(3, 1, False),
(3, 2, False),
(3, 3, False),
],
)
def test_polynomial_features_csr_X_dim_edges(deg, dim, interaction_only):
X_csr = sparse_random(1000, dim, 0.5, random_state=0).tocsr()
X = X_csr.toarray()
est = PolynomialFeatures(deg, interaction_only=interaction_only)
Xt_csr = est.fit_transform(X_csr)
Xt_dense = est.fit_transform(X)
assert isinstance(Xt_csr, sparse.csr_matrix)
assert Xt_csr.dtype == Xt_dense.dtype
assert_array_almost_equal(Xt_csr.A, Xt_dense)
def test_polynomial_features_behaviour_on_zero_degree():
"""Check that PolynomialFeatures raises error when degree=0 and include_bias=False,
and output a single constant column when include_bias=True
"""
X = np.ones((10, 2))
poly = PolynomialFeatures(degree=0, include_bias=False)
err_msg = (
"Setting degree to zero and include_bias to False would result in"
" an empty output array."
)
with pytest.raises(ValueError, match=err_msg):
poly.fit_transform(X)
poly = PolynomialFeatures(degree=(0, 0), include_bias=False)
err_msg = (
"Setting both min_degree and max_degree to zero and include_bias to"
" False would result in an empty output array."
)
with pytest.raises(ValueError, match=err_msg):
poly.fit_transform(X)
for _X in [X, sparse.csr_matrix(X), sparse.csc_matrix(X)]:
poly = PolynomialFeatures(degree=0, include_bias=True)
output = poly.fit_transform(_X)
# convert to dense array if needed
if sparse.issparse(output):
output = output.toarray()
assert_array_equal(output, np.ones((X.shape[0], 1)))