1078 lines
35 KiB
Python
1078 lines
35 KiB
Python
|
"""
|
||
|
This module defines export functions for decision trees.
|
||
|
"""
|
||
|
|
||
|
# Authors: Gilles Louppe <g.louppe@gmail.com>
|
||
|
# Peter Prettenhofer <peter.prettenhofer@gmail.com>
|
||
|
# Brian Holt <bdholt1@gmail.com>
|
||
|
# Noel Dawe <noel@dawe.me>
|
||
|
# Satrajit Gosh <satrajit.ghosh@gmail.com>
|
||
|
# Trevor Stephens <trev.stephens@gmail.com>
|
||
|
# Li Li <aiki.nogard@gmail.com>
|
||
|
# Giuseppe Vettigli <vettigli@gmail.com>
|
||
|
# License: BSD 3 clause
|
||
|
from io import StringIO
|
||
|
from numbers import Integral
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from ..utils.validation import check_is_fitted
|
||
|
from ..base import is_classifier
|
||
|
|
||
|
from . import _criterion
|
||
|
from . import _tree
|
||
|
from ._reingold_tilford import buchheim, Tree
|
||
|
from . import DecisionTreeClassifier
|
||
|
|
||
|
|
||
|
def _color_brew(n):
|
||
|
"""Generate n colors with equally spaced hues.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int
|
||
|
The number of colors required.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
color_list : list, length n
|
||
|
List of n tuples of form (R, G, B) being the components of each color.
|
||
|
"""
|
||
|
color_list = []
|
||
|
|
||
|
# Initialize saturation & value; calculate chroma & value shift
|
||
|
s, v = 0.75, 0.9
|
||
|
c = s * v
|
||
|
m = v - c
|
||
|
|
||
|
for h in np.arange(25, 385, 360.0 / n).astype(int):
|
||
|
# Calculate some intermediate values
|
||
|
h_bar = h / 60.0
|
||
|
x = c * (1 - abs((h_bar % 2) - 1))
|
||
|
# Initialize RGB with same hue & chroma as our color
|
||
|
rgb = [
|
||
|
(c, x, 0),
|
||
|
(x, c, 0),
|
||
|
(0, c, x),
|
||
|
(0, x, c),
|
||
|
(x, 0, c),
|
||
|
(c, 0, x),
|
||
|
(c, x, 0),
|
||
|
]
|
||
|
r, g, b = rgb[int(h_bar)]
|
||
|
# Shift the initial RGB values to match value and store
|
||
|
rgb = [(int(255 * (r + m))), (int(255 * (g + m))), (int(255 * (b + m)))]
|
||
|
color_list.append(rgb)
|
||
|
|
||
|
return color_list
|
||
|
|
||
|
|
||
|
class Sentinel:
|
||
|
def __repr__(self):
|
||
|
return '"tree.dot"'
|
||
|
|
||
|
|
||
|
SENTINEL = Sentinel()
|
||
|
|
||
|
|
||
|
def plot_tree(
|
||
|
decision_tree,
|
||
|
*,
|
||
|
max_depth=None,
|
||
|
feature_names=None,
|
||
|
class_names=None,
|
||
|
label="all",
|
||
|
filled=False,
|
||
|
impurity=True,
|
||
|
node_ids=False,
|
||
|
proportion=False,
|
||
|
rounded=False,
|
||
|
precision=3,
|
||
|
ax=None,
|
||
|
fontsize=None,
|
||
|
):
|
||
|
"""Plot a decision tree.
|
||
|
|
||
|
The sample counts that are shown are weighted with any sample_weights that
|
||
|
might be present.
|
||
|
|
||
|
The visualization is fit automatically to the size of the axis.
|
||
|
Use the ``figsize`` or ``dpi`` arguments of ``plt.figure`` to control
|
||
|
the size of the rendering.
|
||
|
|
||
|
Read more in the :ref:`User Guide <tree>`.
|
||
|
|
||
|
.. versionadded:: 0.21
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
decision_tree : decision tree regressor or classifier
|
||
|
The decision tree to be plotted.
|
||
|
|
||
|
max_depth : int, default=None
|
||
|
The maximum depth of the representation. If None, the tree is fully
|
||
|
generated.
|
||
|
|
||
|
feature_names : list of str, default=None
|
||
|
Names of each of the features.
|
||
|
If None, generic names will be used ("x[0]", "x[1]", ...).
|
||
|
|
||
|
class_names : list of str or bool, default=None
|
||
|
Names of each of the target classes in ascending numerical order.
|
||
|
Only relevant for classification and not supported for multi-output.
|
||
|
If ``True``, shows a symbolic representation of the class name.
|
||
|
|
||
|
label : {'all', 'root', 'none'}, default='all'
|
||
|
Whether to show informative labels for impurity, etc.
|
||
|
Options include 'all' to show at every node, 'root' to show only at
|
||
|
the top root node, or 'none' to not show at any node.
|
||
|
|
||
|
filled : bool, default=False
|
||
|
When set to ``True``, paint nodes to indicate majority class for
|
||
|
classification, extremity of values for regression, or purity of node
|
||
|
for multi-output.
|
||
|
|
||
|
impurity : bool, default=True
|
||
|
When set to ``True``, show the impurity at each node.
|
||
|
|
||
|
node_ids : bool, default=False
|
||
|
When set to ``True``, show the ID number on each node.
|
||
|
|
||
|
proportion : bool, default=False
|
||
|
When set to ``True``, change the display of 'values' and/or 'samples'
|
||
|
to be proportions and percentages respectively.
|
||
|
|
||
|
rounded : bool, default=False
|
||
|
When set to ``True``, draw node boxes with rounded corners and use
|
||
|
Helvetica fonts instead of Times-Roman.
|
||
|
|
||
|
precision : int, default=3
|
||
|
Number of digits of precision for floating point in the values of
|
||
|
impurity, threshold and value attributes of each node.
|
||
|
|
||
|
ax : matplotlib axis, default=None
|
||
|
Axes to plot to. If None, use current axis. Any previous content
|
||
|
is cleared.
|
||
|
|
||
|
fontsize : int, default=None
|
||
|
Size of text font. If None, determined automatically to fit figure.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
annotations : list of artists
|
||
|
List containing the artists for the annotation boxes making up the
|
||
|
tree.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.datasets import load_iris
|
||
|
>>> from sklearn import tree
|
||
|
|
||
|
>>> clf = tree.DecisionTreeClassifier(random_state=0)
|
||
|
>>> iris = load_iris()
|
||
|
|
||
|
>>> clf = clf.fit(iris.data, iris.target)
|
||
|
>>> tree.plot_tree(clf)
|
||
|
[...]
|
||
|
"""
|
||
|
|
||
|
check_is_fitted(decision_tree)
|
||
|
|
||
|
exporter = _MPLTreeExporter(
|
||
|
max_depth=max_depth,
|
||
|
feature_names=feature_names,
|
||
|
class_names=class_names,
|
||
|
label=label,
|
||
|
filled=filled,
|
||
|
impurity=impurity,
|
||
|
node_ids=node_ids,
|
||
|
proportion=proportion,
|
||
|
rounded=rounded,
|
||
|
precision=precision,
|
||
|
fontsize=fontsize,
|
||
|
)
|
||
|
return exporter.export(decision_tree, ax=ax)
|
||
|
|
||
|
|
||
|
class _BaseTreeExporter:
|
||
|
def __init__(
|
||
|
self,
|
||
|
max_depth=None,
|
||
|
feature_names=None,
|
||
|
class_names=None,
|
||
|
label="all",
|
||
|
filled=False,
|
||
|
impurity=True,
|
||
|
node_ids=False,
|
||
|
proportion=False,
|
||
|
rounded=False,
|
||
|
precision=3,
|
||
|
fontsize=None,
|
||
|
):
|
||
|
self.max_depth = max_depth
|
||
|
self.feature_names = feature_names
|
||
|
self.class_names = class_names
|
||
|
self.label = label
|
||
|
self.filled = filled
|
||
|
self.impurity = impurity
|
||
|
self.node_ids = node_ids
|
||
|
self.proportion = proportion
|
||
|
self.rounded = rounded
|
||
|
self.precision = precision
|
||
|
self.fontsize = fontsize
|
||
|
|
||
|
def get_color(self, value):
|
||
|
# Find the appropriate color & intensity for a node
|
||
|
if self.colors["bounds"] is None:
|
||
|
# Classification tree
|
||
|
color = list(self.colors["rgb"][np.argmax(value)])
|
||
|
sorted_values = sorted(value, reverse=True)
|
||
|
if len(sorted_values) == 1:
|
||
|
alpha = 0
|
||
|
else:
|
||
|
alpha = (sorted_values[0] - sorted_values[1]) / (1 - sorted_values[1])
|
||
|
else:
|
||
|
# Regression tree or multi-output
|
||
|
color = list(self.colors["rgb"][0])
|
||
|
alpha = (value - self.colors["bounds"][0]) / (
|
||
|
self.colors["bounds"][1] - self.colors["bounds"][0]
|
||
|
)
|
||
|
# unpack numpy scalars
|
||
|
alpha = float(alpha)
|
||
|
# compute the color as alpha against white
|
||
|
color = [int(round(alpha * c + (1 - alpha) * 255, 0)) for c in color]
|
||
|
# Return html color code in #RRGGBB format
|
||
|
return "#%2x%2x%2x" % tuple(color)
|
||
|
|
||
|
def get_fill_color(self, tree, node_id):
|
||
|
# Fetch appropriate color for node
|
||
|
if "rgb" not in self.colors:
|
||
|
# Initialize colors and bounds if required
|
||
|
self.colors["rgb"] = _color_brew(tree.n_classes[0])
|
||
|
if tree.n_outputs != 1:
|
||
|
# Find max and min impurities for multi-output
|
||
|
self.colors["bounds"] = (np.min(-tree.impurity), np.max(-tree.impurity))
|
||
|
elif tree.n_classes[0] == 1 and len(np.unique(tree.value)) != 1:
|
||
|
# Find max and min values in leaf nodes for regression
|
||
|
self.colors["bounds"] = (np.min(tree.value), np.max(tree.value))
|
||
|
if tree.n_outputs == 1:
|
||
|
node_val = tree.value[node_id][0, :] / tree.weighted_n_node_samples[node_id]
|
||
|
if tree.n_classes[0] == 1:
|
||
|
# Regression
|
||
|
node_val = tree.value[node_id][0, :]
|
||
|
else:
|
||
|
# If multi-output color node by impurity
|
||
|
node_val = -tree.impurity[node_id]
|
||
|
return self.get_color(node_val)
|
||
|
|
||
|
def node_to_str(self, tree, node_id, criterion):
|
||
|
# Generate the node content string
|
||
|
if tree.n_outputs == 1:
|
||
|
value = tree.value[node_id][0, :]
|
||
|
else:
|
||
|
value = tree.value[node_id]
|
||
|
|
||
|
# Should labels be shown?
|
||
|
labels = (self.label == "root" and node_id == 0) or self.label == "all"
|
||
|
|
||
|
characters = self.characters
|
||
|
node_string = characters[-1]
|
||
|
|
||
|
# Write node ID
|
||
|
if self.node_ids:
|
||
|
if labels:
|
||
|
node_string += "node "
|
||
|
node_string += characters[0] + str(node_id) + characters[4]
|
||
|
|
||
|
# Write decision criteria
|
||
|
if tree.children_left[node_id] != _tree.TREE_LEAF:
|
||
|
# Always write node decision criteria, except for leaves
|
||
|
if self.feature_names is not None:
|
||
|
feature = self.feature_names[tree.feature[node_id]]
|
||
|
else:
|
||
|
feature = "x%s%s%s" % (
|
||
|
characters[1],
|
||
|
tree.feature[node_id],
|
||
|
characters[2],
|
||
|
)
|
||
|
node_string += "%s %s %s%s" % (
|
||
|
feature,
|
||
|
characters[3],
|
||
|
round(tree.threshold[node_id], self.precision),
|
||
|
characters[4],
|
||
|
)
|
||
|
|
||
|
# Write impurity
|
||
|
if self.impurity:
|
||
|
if isinstance(criterion, _criterion.FriedmanMSE):
|
||
|
criterion = "friedman_mse"
|
||
|
elif isinstance(criterion, _criterion.MSE) or criterion == "squared_error":
|
||
|
criterion = "squared_error"
|
||
|
elif not isinstance(criterion, str):
|
||
|
criterion = "impurity"
|
||
|
if labels:
|
||
|
node_string += "%s = " % criterion
|
||
|
node_string += (
|
||
|
str(round(tree.impurity[node_id], self.precision)) + characters[4]
|
||
|
)
|
||
|
|
||
|
# Write node sample count
|
||
|
if labels:
|
||
|
node_string += "samples = "
|
||
|
if self.proportion:
|
||
|
percent = (
|
||
|
100.0 * tree.n_node_samples[node_id] / float(tree.n_node_samples[0])
|
||
|
)
|
||
|
node_string += str(round(percent, 1)) + "%" + characters[4]
|
||
|
else:
|
||
|
node_string += str(tree.n_node_samples[node_id]) + characters[4]
|
||
|
|
||
|
# Write node class distribution / regression value
|
||
|
if self.proportion and tree.n_classes[0] != 1:
|
||
|
# For classification this will show the proportion of samples
|
||
|
value = value / tree.weighted_n_node_samples[node_id]
|
||
|
if labels:
|
||
|
node_string += "value = "
|
||
|
if tree.n_classes[0] == 1:
|
||
|
# Regression
|
||
|
value_text = np.around(value, self.precision)
|
||
|
elif self.proportion:
|
||
|
# Classification
|
||
|
value_text = np.around(value, self.precision)
|
||
|
elif np.all(np.equal(np.mod(value, 1), 0)):
|
||
|
# Classification without floating-point weights
|
||
|
value_text = value.astype(int)
|
||
|
else:
|
||
|
# Classification with floating-point weights
|
||
|
value_text = np.around(value, self.precision)
|
||
|
# Strip whitespace
|
||
|
value_text = str(value_text.astype("S32")).replace("b'", "'")
|
||
|
value_text = value_text.replace("' '", ", ").replace("'", "")
|
||
|
if tree.n_classes[0] == 1 and tree.n_outputs == 1:
|
||
|
value_text = value_text.replace("[", "").replace("]", "")
|
||
|
value_text = value_text.replace("\n ", characters[4])
|
||
|
node_string += value_text + characters[4]
|
||
|
|
||
|
# Write node majority class
|
||
|
if (
|
||
|
self.class_names is not None
|
||
|
and tree.n_classes[0] != 1
|
||
|
and tree.n_outputs == 1
|
||
|
):
|
||
|
# Only done for single-output classification trees
|
||
|
if labels:
|
||
|
node_string += "class = "
|
||
|
if self.class_names is not True:
|
||
|
class_name = self.class_names[np.argmax(value)]
|
||
|
else:
|
||
|
class_name = "y%s%s%s" % (
|
||
|
characters[1],
|
||
|
np.argmax(value),
|
||
|
characters[2],
|
||
|
)
|
||
|
node_string += class_name
|
||
|
|
||
|
# Clean up any trailing newlines
|
||
|
if node_string.endswith(characters[4]):
|
||
|
node_string = node_string[: -len(characters[4])]
|
||
|
|
||
|
return node_string + characters[5]
|
||
|
|
||
|
|
||
|
class _DOTTreeExporter(_BaseTreeExporter):
|
||
|
def __init__(
|
||
|
self,
|
||
|
out_file=SENTINEL,
|
||
|
max_depth=None,
|
||
|
feature_names=None,
|
||
|
class_names=None,
|
||
|
label="all",
|
||
|
filled=False,
|
||
|
leaves_parallel=False,
|
||
|
impurity=True,
|
||
|
node_ids=False,
|
||
|
proportion=False,
|
||
|
rotate=False,
|
||
|
rounded=False,
|
||
|
special_characters=False,
|
||
|
precision=3,
|
||
|
fontname="helvetica",
|
||
|
):
|
||
|
|
||
|
super().__init__(
|
||
|
max_depth=max_depth,
|
||
|
feature_names=feature_names,
|
||
|
class_names=class_names,
|
||
|
label=label,
|
||
|
filled=filled,
|
||
|
impurity=impurity,
|
||
|
node_ids=node_ids,
|
||
|
proportion=proportion,
|
||
|
rounded=rounded,
|
||
|
precision=precision,
|
||
|
)
|
||
|
self.leaves_parallel = leaves_parallel
|
||
|
self.out_file = out_file
|
||
|
self.special_characters = special_characters
|
||
|
self.fontname = fontname
|
||
|
self.rotate = rotate
|
||
|
|
||
|
# PostScript compatibility for special characters
|
||
|
if special_characters:
|
||
|
self.characters = ["#", "<SUB>", "</SUB>", "≤", "<br/>", ">", "<"]
|
||
|
else:
|
||
|
self.characters = ["#", "[", "]", "<=", "\\n", '"', '"']
|
||
|
|
||
|
# validate
|
||
|
if isinstance(precision, Integral):
|
||
|
if precision < 0:
|
||
|
raise ValueError(
|
||
|
"'precision' should be greater or equal to 0."
|
||
|
" Got {} instead.".format(precision)
|
||
|
)
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"'precision' should be an integer. Got {} instead.".format(
|
||
|
type(precision)
|
||
|
)
|
||
|
)
|
||
|
|
||
|
# The depth of each node for plotting with 'leaf' option
|
||
|
self.ranks = {"leaves": []}
|
||
|
# The colors to render each node with
|
||
|
self.colors = {"bounds": None}
|
||
|
|
||
|
def export(self, decision_tree):
|
||
|
# Check length of feature_names before getting into the tree node
|
||
|
# Raise error if length of feature_names does not match
|
||
|
# n_features_in_ in the decision_tree
|
||
|
if self.feature_names is not None:
|
||
|
if len(self.feature_names) != decision_tree.n_features_in_:
|
||
|
raise ValueError(
|
||
|
"Length of feature_names, %d does not match number of features, %d"
|
||
|
% (len(self.feature_names), decision_tree.n_features_in_)
|
||
|
)
|
||
|
# each part writes to out_file
|
||
|
self.head()
|
||
|
# Now recurse the tree and add node & edge attributes
|
||
|
if isinstance(decision_tree, _tree.Tree):
|
||
|
self.recurse(decision_tree, 0, criterion="impurity")
|
||
|
else:
|
||
|
self.recurse(decision_tree.tree_, 0, criterion=decision_tree.criterion)
|
||
|
|
||
|
self.tail()
|
||
|
|
||
|
def tail(self):
|
||
|
# If required, draw leaf nodes at same depth as each other
|
||
|
if self.leaves_parallel:
|
||
|
for rank in sorted(self.ranks):
|
||
|
self.out_file.write(
|
||
|
"{rank=same ; " + "; ".join(r for r in self.ranks[rank]) + "} ;\n"
|
||
|
)
|
||
|
self.out_file.write("}")
|
||
|
|
||
|
def head(self):
|
||
|
self.out_file.write("digraph Tree {\n")
|
||
|
|
||
|
# Specify node aesthetics
|
||
|
self.out_file.write("node [shape=box")
|
||
|
rounded_filled = []
|
||
|
if self.filled:
|
||
|
rounded_filled.append("filled")
|
||
|
if self.rounded:
|
||
|
rounded_filled.append("rounded")
|
||
|
if len(rounded_filled) > 0:
|
||
|
self.out_file.write(
|
||
|
', style="%s", color="black"' % ", ".join(rounded_filled)
|
||
|
)
|
||
|
|
||
|
self.out_file.write(', fontname="%s"' % self.fontname)
|
||
|
self.out_file.write("] ;\n")
|
||
|
|
||
|
# Specify graph & edge aesthetics
|
||
|
if self.leaves_parallel:
|
||
|
self.out_file.write("graph [ranksep=equally, splines=polyline] ;\n")
|
||
|
|
||
|
self.out_file.write('edge [fontname="%s"] ;\n' % self.fontname)
|
||
|
|
||
|
if self.rotate:
|
||
|
self.out_file.write("rankdir=LR ;\n")
|
||
|
|
||
|
def recurse(self, tree, node_id, criterion, parent=None, depth=0):
|
||
|
if node_id == _tree.TREE_LEAF:
|
||
|
raise ValueError("Invalid node_id %s" % _tree.TREE_LEAF)
|
||
|
|
||
|
left_child = tree.children_left[node_id]
|
||
|
right_child = tree.children_right[node_id]
|
||
|
|
||
|
# Add node with description
|
||
|
if self.max_depth is None or depth <= self.max_depth:
|
||
|
|
||
|
# Collect ranks for 'leaf' option in plot_options
|
||
|
if left_child == _tree.TREE_LEAF:
|
||
|
self.ranks["leaves"].append(str(node_id))
|
||
|
elif str(depth) not in self.ranks:
|
||
|
self.ranks[str(depth)] = [str(node_id)]
|
||
|
else:
|
||
|
self.ranks[str(depth)].append(str(node_id))
|
||
|
|
||
|
self.out_file.write(
|
||
|
"%d [label=%s" % (node_id, self.node_to_str(tree, node_id, criterion))
|
||
|
)
|
||
|
|
||
|
if self.filled:
|
||
|
self.out_file.write(
|
||
|
', fillcolor="%s"' % self.get_fill_color(tree, node_id)
|
||
|
)
|
||
|
self.out_file.write("] ;\n")
|
||
|
|
||
|
if parent is not None:
|
||
|
# Add edge to parent
|
||
|
self.out_file.write("%d -> %d" % (parent, node_id))
|
||
|
if parent == 0:
|
||
|
# Draw True/False labels if parent is root node
|
||
|
angles = np.array([45, -45]) * ((self.rotate - 0.5) * -2)
|
||
|
self.out_file.write(" [labeldistance=2.5, labelangle=")
|
||
|
if node_id == 1:
|
||
|
self.out_file.write('%d, headlabel="True"]' % angles[0])
|
||
|
else:
|
||
|
self.out_file.write('%d, headlabel="False"]' % angles[1])
|
||
|
self.out_file.write(" ;\n")
|
||
|
|
||
|
if left_child != _tree.TREE_LEAF:
|
||
|
self.recurse(
|
||
|
tree,
|
||
|
left_child,
|
||
|
criterion=criterion,
|
||
|
parent=node_id,
|
||
|
depth=depth + 1,
|
||
|
)
|
||
|
self.recurse(
|
||
|
tree,
|
||
|
right_child,
|
||
|
criterion=criterion,
|
||
|
parent=node_id,
|
||
|
depth=depth + 1,
|
||
|
)
|
||
|
|
||
|
else:
|
||
|
self.ranks["leaves"].append(str(node_id))
|
||
|
|
||
|
self.out_file.write('%d [label="(...)"' % node_id)
|
||
|
if self.filled:
|
||
|
# color cropped nodes grey
|
||
|
self.out_file.write(', fillcolor="#C0C0C0"')
|
||
|
self.out_file.write("] ;\n" % node_id)
|
||
|
|
||
|
if parent is not None:
|
||
|
# Add edge to parent
|
||
|
self.out_file.write("%d -> %d ;\n" % (parent, node_id))
|
||
|
|
||
|
|
||
|
class _MPLTreeExporter(_BaseTreeExporter):
|
||
|
def __init__(
|
||
|
self,
|
||
|
max_depth=None,
|
||
|
feature_names=None,
|
||
|
class_names=None,
|
||
|
label="all",
|
||
|
filled=False,
|
||
|
impurity=True,
|
||
|
node_ids=False,
|
||
|
proportion=False,
|
||
|
rounded=False,
|
||
|
precision=3,
|
||
|
fontsize=None,
|
||
|
):
|
||
|
|
||
|
super().__init__(
|
||
|
max_depth=max_depth,
|
||
|
feature_names=feature_names,
|
||
|
class_names=class_names,
|
||
|
label=label,
|
||
|
filled=filled,
|
||
|
impurity=impurity,
|
||
|
node_ids=node_ids,
|
||
|
proportion=proportion,
|
||
|
rounded=rounded,
|
||
|
precision=precision,
|
||
|
)
|
||
|
self.fontsize = fontsize
|
||
|
|
||
|
# validate
|
||
|
if isinstance(precision, Integral):
|
||
|
if precision < 0:
|
||
|
raise ValueError(
|
||
|
"'precision' should be greater or equal to 0."
|
||
|
" Got {} instead.".format(precision)
|
||
|
)
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"'precision' should be an integer. Got {} instead.".format(
|
||
|
type(precision)
|
||
|
)
|
||
|
)
|
||
|
|
||
|
# The depth of each node for plotting with 'leaf' option
|
||
|
self.ranks = {"leaves": []}
|
||
|
# The colors to render each node with
|
||
|
self.colors = {"bounds": None}
|
||
|
|
||
|
self.characters = ["#", "[", "]", "<=", "\n", "", ""]
|
||
|
self.bbox_args = dict()
|
||
|
if self.rounded:
|
||
|
self.bbox_args["boxstyle"] = "round"
|
||
|
|
||
|
self.arrow_args = dict(arrowstyle="<-")
|
||
|
|
||
|
def _make_tree(self, node_id, et, criterion, depth=0):
|
||
|
# traverses _tree.Tree recursively, builds intermediate
|
||
|
# "_reingold_tilford.Tree" object
|
||
|
name = self.node_to_str(et, node_id, criterion=criterion)
|
||
|
if et.children_left[node_id] != _tree.TREE_LEAF and (
|
||
|
self.max_depth is None or depth <= self.max_depth
|
||
|
):
|
||
|
children = [
|
||
|
self._make_tree(
|
||
|
et.children_left[node_id], et, criterion, depth=depth + 1
|
||
|
),
|
||
|
self._make_tree(
|
||
|
et.children_right[node_id], et, criterion, depth=depth + 1
|
||
|
),
|
||
|
]
|
||
|
else:
|
||
|
return Tree(name, node_id)
|
||
|
return Tree(name, node_id, *children)
|
||
|
|
||
|
def export(self, decision_tree, ax=None):
|
||
|
import matplotlib.pyplot as plt
|
||
|
from matplotlib.text import Annotation
|
||
|
|
||
|
if ax is None:
|
||
|
ax = plt.gca()
|
||
|
ax.clear()
|
||
|
ax.set_axis_off()
|
||
|
my_tree = self._make_tree(0, decision_tree.tree_, decision_tree.criterion)
|
||
|
draw_tree = buchheim(my_tree)
|
||
|
|
||
|
# important to make sure we're still
|
||
|
# inside the axis after drawing the box
|
||
|
# this makes sense because the width of a box
|
||
|
# is about the same as the distance between boxes
|
||
|
max_x, max_y = draw_tree.max_extents() + 1
|
||
|
ax_width = ax.get_window_extent().width
|
||
|
ax_height = ax.get_window_extent().height
|
||
|
|
||
|
scale_x = ax_width / max_x
|
||
|
scale_y = ax_height / max_y
|
||
|
self.recurse(draw_tree, decision_tree.tree_, ax, max_x, max_y)
|
||
|
|
||
|
anns = [ann for ann in ax.get_children() if isinstance(ann, Annotation)]
|
||
|
|
||
|
# update sizes of all bboxes
|
||
|
renderer = ax.figure.canvas.get_renderer()
|
||
|
|
||
|
for ann in anns:
|
||
|
ann.update_bbox_position_size(renderer)
|
||
|
|
||
|
if self.fontsize is None:
|
||
|
# get figure to data transform
|
||
|
# adjust fontsize to avoid overlap
|
||
|
# get max box width and height
|
||
|
extents = [ann.get_bbox_patch().get_window_extent() for ann in anns]
|
||
|
max_width = max([extent.width for extent in extents])
|
||
|
max_height = max([extent.height for extent in extents])
|
||
|
# width should be around scale_x in axis coordinates
|
||
|
size = anns[0].get_fontsize() * min(
|
||
|
scale_x / max_width, scale_y / max_height
|
||
|
)
|
||
|
for ann in anns:
|
||
|
ann.set_fontsize(size)
|
||
|
|
||
|
return anns
|
||
|
|
||
|
def recurse(self, node, tree, ax, max_x, max_y, depth=0):
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
kwargs = dict(
|
||
|
bbox=self.bbox_args.copy(),
|
||
|
ha="center",
|
||
|
va="center",
|
||
|
zorder=100 - 10 * depth,
|
||
|
xycoords="axes fraction",
|
||
|
arrowprops=self.arrow_args.copy(),
|
||
|
)
|
||
|
kwargs["arrowprops"]["edgecolor"] = plt.rcParams["text.color"]
|
||
|
|
||
|
if self.fontsize is not None:
|
||
|
kwargs["fontsize"] = self.fontsize
|
||
|
|
||
|
# offset things by .5 to center them in plot
|
||
|
xy = ((node.x + 0.5) / max_x, (max_y - node.y - 0.5) / max_y)
|
||
|
|
||
|
if self.max_depth is None or depth <= self.max_depth:
|
||
|
if self.filled:
|
||
|
kwargs["bbox"]["fc"] = self.get_fill_color(tree, node.tree.node_id)
|
||
|
else:
|
||
|
kwargs["bbox"]["fc"] = ax.get_facecolor()
|
||
|
|
||
|
if node.parent is None:
|
||
|
# root
|
||
|
ax.annotate(node.tree.label, xy, **kwargs)
|
||
|
else:
|
||
|
xy_parent = (
|
||
|
(node.parent.x + 0.5) / max_x,
|
||
|
(max_y - node.parent.y - 0.5) / max_y,
|
||
|
)
|
||
|
ax.annotate(node.tree.label, xy_parent, xy, **kwargs)
|
||
|
for child in node.children:
|
||
|
self.recurse(child, tree, ax, max_x, max_y, depth=depth + 1)
|
||
|
|
||
|
else:
|
||
|
xy_parent = (
|
||
|
(node.parent.x + 0.5) / max_x,
|
||
|
(max_y - node.parent.y - 0.5) / max_y,
|
||
|
)
|
||
|
kwargs["bbox"]["fc"] = "grey"
|
||
|
ax.annotate("\n (...) \n", xy_parent, xy, **kwargs)
|
||
|
|
||
|
|
||
|
def export_graphviz(
|
||
|
decision_tree,
|
||
|
out_file=None,
|
||
|
*,
|
||
|
max_depth=None,
|
||
|
feature_names=None,
|
||
|
class_names=None,
|
||
|
label="all",
|
||
|
filled=False,
|
||
|
leaves_parallel=False,
|
||
|
impurity=True,
|
||
|
node_ids=False,
|
||
|
proportion=False,
|
||
|
rotate=False,
|
||
|
rounded=False,
|
||
|
special_characters=False,
|
||
|
precision=3,
|
||
|
fontname="helvetica",
|
||
|
):
|
||
|
"""Export a decision tree in DOT format.
|
||
|
|
||
|
This function generates a GraphViz representation of the decision tree,
|
||
|
which is then written into `out_file`. Once exported, graphical renderings
|
||
|
can be generated using, for example::
|
||
|
|
||
|
$ dot -Tps tree.dot -o tree.ps (PostScript format)
|
||
|
$ dot -Tpng tree.dot -o tree.png (PNG format)
|
||
|
|
||
|
The sample counts that are shown are weighted with any sample_weights that
|
||
|
might be present.
|
||
|
|
||
|
Read more in the :ref:`User Guide <tree>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
decision_tree : decision tree classifier
|
||
|
The decision tree to be exported to GraphViz.
|
||
|
|
||
|
out_file : object or str, default=None
|
||
|
Handle or name of the output file. If ``None``, the result is
|
||
|
returned as a string.
|
||
|
|
||
|
.. versionchanged:: 0.20
|
||
|
Default of out_file changed from "tree.dot" to None.
|
||
|
|
||
|
max_depth : int, default=None
|
||
|
The maximum depth of the representation. If None, the tree is fully
|
||
|
generated.
|
||
|
|
||
|
feature_names : list of str, default=None
|
||
|
Names of each of the features.
|
||
|
If None, generic names will be used ("x[0]", "x[1]", ...).
|
||
|
|
||
|
class_names : list of str or bool, default=None
|
||
|
Names of each of the target classes in ascending numerical order.
|
||
|
Only relevant for classification and not supported for multi-output.
|
||
|
If ``True``, shows a symbolic representation of the class name.
|
||
|
|
||
|
label : {'all', 'root', 'none'}, default='all'
|
||
|
Whether to show informative labels for impurity, etc.
|
||
|
Options include 'all' to show at every node, 'root' to show only at
|
||
|
the top root node, or 'none' to not show at any node.
|
||
|
|
||
|
filled : bool, default=False
|
||
|
When set to ``True``, paint nodes to indicate majority class for
|
||
|
classification, extremity of values for regression, or purity of node
|
||
|
for multi-output.
|
||
|
|
||
|
leaves_parallel : bool, default=False
|
||
|
When set to ``True``, draw all leaf nodes at the bottom of the tree.
|
||
|
|
||
|
impurity : bool, default=True
|
||
|
When set to ``True``, show the impurity at each node.
|
||
|
|
||
|
node_ids : bool, default=False
|
||
|
When set to ``True``, show the ID number on each node.
|
||
|
|
||
|
proportion : bool, default=False
|
||
|
When set to ``True``, change the display of 'values' and/or 'samples'
|
||
|
to be proportions and percentages respectively.
|
||
|
|
||
|
rotate : bool, default=False
|
||
|
When set to ``True``, orient tree left to right rather than top-down.
|
||
|
|
||
|
rounded : bool, default=False
|
||
|
When set to ``True``, draw node boxes with rounded corners.
|
||
|
|
||
|
special_characters : bool, default=False
|
||
|
When set to ``False``, ignore special characters for PostScript
|
||
|
compatibility.
|
||
|
|
||
|
precision : int, default=3
|
||
|
Number of digits of precision for floating point in the values of
|
||
|
impurity, threshold and value attributes of each node.
|
||
|
|
||
|
fontname : str, default='helvetica'
|
||
|
Name of font used to render text.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dot_data : str
|
||
|
String representation of the input tree in GraphViz dot format.
|
||
|
Only returned if ``out_file`` is None.
|
||
|
|
||
|
.. versionadded:: 0.18
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.datasets import load_iris
|
||
|
>>> from sklearn import tree
|
||
|
|
||
|
>>> clf = tree.DecisionTreeClassifier()
|
||
|
>>> iris = load_iris()
|
||
|
|
||
|
>>> clf = clf.fit(iris.data, iris.target)
|
||
|
>>> tree.export_graphviz(clf)
|
||
|
'digraph Tree {...
|
||
|
"""
|
||
|
|
||
|
check_is_fitted(decision_tree)
|
||
|
own_file = False
|
||
|
return_string = False
|
||
|
try:
|
||
|
if isinstance(out_file, str):
|
||
|
out_file = open(out_file, "w", encoding="utf-8")
|
||
|
own_file = True
|
||
|
|
||
|
if out_file is None:
|
||
|
return_string = True
|
||
|
out_file = StringIO()
|
||
|
|
||
|
exporter = _DOTTreeExporter(
|
||
|
out_file=out_file,
|
||
|
max_depth=max_depth,
|
||
|
feature_names=feature_names,
|
||
|
class_names=class_names,
|
||
|
label=label,
|
||
|
filled=filled,
|
||
|
leaves_parallel=leaves_parallel,
|
||
|
impurity=impurity,
|
||
|
node_ids=node_ids,
|
||
|
proportion=proportion,
|
||
|
rotate=rotate,
|
||
|
rounded=rounded,
|
||
|
special_characters=special_characters,
|
||
|
precision=precision,
|
||
|
fontname=fontname,
|
||
|
)
|
||
|
exporter.export(decision_tree)
|
||
|
|
||
|
if return_string:
|
||
|
return exporter.out_file.getvalue()
|
||
|
|
||
|
finally:
|
||
|
if own_file:
|
||
|
out_file.close()
|
||
|
|
||
|
|
||
|
def _compute_depth(tree, node):
|
||
|
"""
|
||
|
Returns the depth of the subtree rooted in node.
|
||
|
"""
|
||
|
|
||
|
def compute_depth_(
|
||
|
current_node, current_depth, children_left, children_right, depths
|
||
|
):
|
||
|
depths += [current_depth]
|
||
|
left = children_left[current_node]
|
||
|
right = children_right[current_node]
|
||
|
if left != -1 and right != -1:
|
||
|
compute_depth_(
|
||
|
left, current_depth + 1, children_left, children_right, depths
|
||
|
)
|
||
|
compute_depth_(
|
||
|
right, current_depth + 1, children_left, children_right, depths
|
||
|
)
|
||
|
|
||
|
depths = []
|
||
|
compute_depth_(node, 1, tree.children_left, tree.children_right, depths)
|
||
|
return max(depths)
|
||
|
|
||
|
|
||
|
def export_text(
|
||
|
decision_tree,
|
||
|
*,
|
||
|
feature_names=None,
|
||
|
max_depth=10,
|
||
|
spacing=3,
|
||
|
decimals=2,
|
||
|
show_weights=False,
|
||
|
):
|
||
|
"""Build a text report showing the rules of a decision tree.
|
||
|
|
||
|
Note that backwards compatibility may not be supported.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
decision_tree : object
|
||
|
The decision tree estimator to be exported.
|
||
|
It can be an instance of
|
||
|
DecisionTreeClassifier or DecisionTreeRegressor.
|
||
|
|
||
|
feature_names : list of str, default=None
|
||
|
A list of length n_features containing the feature names.
|
||
|
If None generic names will be used ("feature_0", "feature_1", ...).
|
||
|
|
||
|
max_depth : int, default=10
|
||
|
Only the first max_depth levels of the tree are exported.
|
||
|
Truncated branches will be marked with "...".
|
||
|
|
||
|
spacing : int, default=3
|
||
|
Number of spaces between edges. The higher it is, the wider the result.
|
||
|
|
||
|
decimals : int, default=2
|
||
|
Number of decimal digits to display.
|
||
|
|
||
|
show_weights : bool, default=False
|
||
|
If true the classification weights will be exported on each leaf.
|
||
|
The classification weights are the number of samples each class.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
report : str
|
||
|
Text summary of all the rules in the decision tree.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
>>> from sklearn.datasets import load_iris
|
||
|
>>> from sklearn.tree import DecisionTreeClassifier
|
||
|
>>> from sklearn.tree import export_text
|
||
|
>>> iris = load_iris()
|
||
|
>>> X = iris['data']
|
||
|
>>> y = iris['target']
|
||
|
>>> decision_tree = DecisionTreeClassifier(random_state=0, max_depth=2)
|
||
|
>>> decision_tree = decision_tree.fit(X, y)
|
||
|
>>> r = export_text(decision_tree, feature_names=iris['feature_names'])
|
||
|
>>> print(r)
|
||
|
|--- petal width (cm) <= 0.80
|
||
|
| |--- class: 0
|
||
|
|--- petal width (cm) > 0.80
|
||
|
| |--- petal width (cm) <= 1.75
|
||
|
| | |--- class: 1
|
||
|
| |--- petal width (cm) > 1.75
|
||
|
| | |--- class: 2
|
||
|
"""
|
||
|
check_is_fitted(decision_tree)
|
||
|
tree_ = decision_tree.tree_
|
||
|
if is_classifier(decision_tree):
|
||
|
class_names = decision_tree.classes_
|
||
|
right_child_fmt = "{} {} <= {}\n"
|
||
|
left_child_fmt = "{} {} > {}\n"
|
||
|
truncation_fmt = "{} {}\n"
|
||
|
|
||
|
if max_depth < 0:
|
||
|
raise ValueError("max_depth bust be >= 0, given %d" % max_depth)
|
||
|
|
||
|
if feature_names is not None and len(feature_names) != tree_.n_features:
|
||
|
raise ValueError(
|
||
|
"feature_names must contain %d elements, got %d"
|
||
|
% (tree_.n_features, len(feature_names))
|
||
|
)
|
||
|
|
||
|
if spacing <= 0:
|
||
|
raise ValueError("spacing must be > 0, given %d" % spacing)
|
||
|
|
||
|
if decimals < 0:
|
||
|
raise ValueError("decimals must be >= 0, given %d" % decimals)
|
||
|
|
||
|
if isinstance(decision_tree, DecisionTreeClassifier):
|
||
|
value_fmt = "{}{} weights: {}\n"
|
||
|
if not show_weights:
|
||
|
value_fmt = "{}{}{}\n"
|
||
|
else:
|
||
|
value_fmt = "{}{} value: {}\n"
|
||
|
|
||
|
if feature_names:
|
||
|
feature_names_ = [
|
||
|
feature_names[i] if i != _tree.TREE_UNDEFINED else None
|
||
|
for i in tree_.feature
|
||
|
]
|
||
|
else:
|
||
|
feature_names_ = ["feature_{}".format(i) for i in tree_.feature]
|
||
|
|
||
|
export_text.report = ""
|
||
|
|
||
|
def _add_leaf(value, class_name, indent):
|
||
|
val = ""
|
||
|
is_classification = isinstance(decision_tree, DecisionTreeClassifier)
|
||
|
if show_weights or not is_classification:
|
||
|
val = ["{1:.{0}f}, ".format(decimals, v) for v in value]
|
||
|
val = "[" + "".join(val)[:-2] + "]"
|
||
|
if is_classification:
|
||
|
val += " class: " + str(class_name)
|
||
|
export_text.report += value_fmt.format(indent, "", val)
|
||
|
|
||
|
def print_tree_recurse(node, depth):
|
||
|
indent = ("|" + (" " * spacing)) * depth
|
||
|
indent = indent[:-spacing] + "-" * spacing
|
||
|
|
||
|
value = None
|
||
|
if tree_.n_outputs == 1:
|
||
|
value = tree_.value[node][0]
|
||
|
else:
|
||
|
value = tree_.value[node].T[0]
|
||
|
class_name = np.argmax(value)
|
||
|
|
||
|
if tree_.n_classes[0] != 1 and tree_.n_outputs == 1:
|
||
|
class_name = class_names[class_name]
|
||
|
|
||
|
if depth <= max_depth + 1:
|
||
|
info_fmt = ""
|
||
|
info_fmt_left = info_fmt
|
||
|
info_fmt_right = info_fmt
|
||
|
|
||
|
if tree_.feature[node] != _tree.TREE_UNDEFINED:
|
||
|
name = feature_names_[node]
|
||
|
threshold = tree_.threshold[node]
|
||
|
threshold = "{1:.{0}f}".format(decimals, threshold)
|
||
|
export_text.report += right_child_fmt.format(indent, name, threshold)
|
||
|
export_text.report += info_fmt_left
|
||
|
print_tree_recurse(tree_.children_left[node], depth + 1)
|
||
|
|
||
|
export_text.report += left_child_fmt.format(indent, name, threshold)
|
||
|
export_text.report += info_fmt_right
|
||
|
print_tree_recurse(tree_.children_right[node], depth + 1)
|
||
|
else: # leaf
|
||
|
_add_leaf(value, class_name, indent)
|
||
|
else:
|
||
|
subtree_depth = _compute_depth(tree_, node)
|
||
|
if subtree_depth == 1:
|
||
|
_add_leaf(value, class_name, indent)
|
||
|
else:
|
||
|
trunc_report = "truncated branch of depth %d" % subtree_depth
|
||
|
export_text.report += truncation_fmt.format(indent, trunc_report)
|
||
|
|
||
|
print_tree_recurse(0, 1)
|
||
|
return export_text.report
|