1188 lines
36 KiB
Python
1188 lines
36 KiB
Python
|
"""
|
||
|
The :mod:`sklearn.utils` module includes various utilities.
|
||
|
"""
|
||
|
from collections.abc import Sequence
|
||
|
from contextlib import contextmanager
|
||
|
from itertools import compress
|
||
|
from itertools import islice
|
||
|
import math
|
||
|
import numbers
|
||
|
import platform
|
||
|
import struct
|
||
|
import timeit
|
||
|
from contextlib import suppress
|
||
|
|
||
|
import warnings
|
||
|
import numpy as np
|
||
|
from scipy.sparse import issparse
|
||
|
|
||
|
from .murmurhash import murmurhash3_32
|
||
|
from .class_weight import compute_class_weight, compute_sample_weight
|
||
|
from . import _joblib
|
||
|
from ..exceptions import DataConversionWarning
|
||
|
from .deprecation import deprecated
|
||
|
from .discovery import all_estimators
|
||
|
from .fixes import parse_version, threadpool_info
|
||
|
from ._estimator_html_repr import estimator_html_repr
|
||
|
from .validation import (
|
||
|
as_float_array,
|
||
|
assert_all_finite,
|
||
|
check_random_state,
|
||
|
column_or_1d,
|
||
|
check_array,
|
||
|
check_consistent_length,
|
||
|
check_X_y,
|
||
|
indexable,
|
||
|
check_symmetric,
|
||
|
check_scalar,
|
||
|
_is_arraylike_not_scalar,
|
||
|
)
|
||
|
from .. import get_config
|
||
|
from ._bunch import Bunch
|
||
|
|
||
|
|
||
|
# Do not deprecate parallel_backend and register_parallel_backend as they are
|
||
|
# needed to tune `scikit-learn` behavior and have different effect if called
|
||
|
# from the vendored version or or the site-package version. The other are
|
||
|
# utilities that are independent of scikit-learn so they are not part of
|
||
|
# scikit-learn public API.
|
||
|
parallel_backend = _joblib.parallel_backend
|
||
|
register_parallel_backend = _joblib.register_parallel_backend
|
||
|
|
||
|
__all__ = [
|
||
|
"murmurhash3_32",
|
||
|
"as_float_array",
|
||
|
"assert_all_finite",
|
||
|
"check_array",
|
||
|
"check_random_state",
|
||
|
"compute_class_weight",
|
||
|
"compute_sample_weight",
|
||
|
"column_or_1d",
|
||
|
"check_consistent_length",
|
||
|
"check_X_y",
|
||
|
"check_scalar",
|
||
|
"indexable",
|
||
|
"check_symmetric",
|
||
|
"indices_to_mask",
|
||
|
"deprecated",
|
||
|
"parallel_backend",
|
||
|
"register_parallel_backend",
|
||
|
"resample",
|
||
|
"shuffle",
|
||
|
"check_matplotlib_support",
|
||
|
"all_estimators",
|
||
|
"DataConversionWarning",
|
||
|
"estimator_html_repr",
|
||
|
"Bunch",
|
||
|
]
|
||
|
|
||
|
IS_PYPY = platform.python_implementation() == "PyPy"
|
||
|
_IS_32BIT = 8 * struct.calcsize("P") == 32
|
||
|
|
||
|
|
||
|
def _in_unstable_openblas_configuration():
|
||
|
"""Return True if in an unstable configuration for OpenBLAS"""
|
||
|
|
||
|
# Import libraries which might load OpenBLAS.
|
||
|
import numpy # noqa
|
||
|
import scipy # noqa
|
||
|
|
||
|
modules_info = threadpool_info()
|
||
|
|
||
|
open_blas_used = any(info["internal_api"] == "openblas" for info in modules_info)
|
||
|
if not open_blas_used:
|
||
|
return False
|
||
|
|
||
|
# OpenBLAS 0.3.16 fixed unstability for arm64, see:
|
||
|
# https://github.com/xianyi/OpenBLAS/blob/1b6db3dbba672b4f8af935bd43a1ff6cff4d20b7/Changelog.txt#L56-L58 # noqa
|
||
|
openblas_arm64_stable_version = parse_version("0.3.16")
|
||
|
for info in modules_info:
|
||
|
if info["internal_api"] != "openblas":
|
||
|
continue
|
||
|
openblas_version = info.get("version")
|
||
|
openblas_architecture = info.get("architecture")
|
||
|
if openblas_version is None or openblas_architecture is None:
|
||
|
# Cannot be sure that OpenBLAS is good enough. Assume unstable:
|
||
|
return True
|
||
|
if (
|
||
|
openblas_architecture == "neoversen1"
|
||
|
and parse_version(openblas_version) < openblas_arm64_stable_version
|
||
|
):
|
||
|
# See discussions in https://github.com/numpy/numpy/issues/19411
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
|
||
|
def safe_mask(X, mask):
|
||
|
"""Return a mask which is safe to use on X.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix}
|
||
|
Data on which to apply mask.
|
||
|
|
||
|
mask : ndarray
|
||
|
Mask to be used on X.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mask : ndarray
|
||
|
Array that is safe to use on X.
|
||
|
"""
|
||
|
mask = np.asarray(mask)
|
||
|
if np.issubdtype(mask.dtype, np.signedinteger):
|
||
|
return mask
|
||
|
|
||
|
if hasattr(X, "toarray"):
|
||
|
ind = np.arange(mask.shape[0])
|
||
|
mask = ind[mask]
|
||
|
return mask
|
||
|
|
||
|
|
||
|
def axis0_safe_slice(X, mask, len_mask):
|
||
|
"""Return a mask which is safer to use on X than safe_mask.
|
||
|
|
||
|
This mask is safer than safe_mask since it returns an
|
||
|
empty array, when a sparse matrix is sliced with a boolean mask
|
||
|
with all False, instead of raising an unhelpful error in older
|
||
|
versions of SciPy.
|
||
|
|
||
|
See: https://github.com/scipy/scipy/issues/5361
|
||
|
|
||
|
Also note that we can avoid doing the dot product by checking if
|
||
|
the len_mask is not zero in _huber_loss_and_gradient but this
|
||
|
is not going to be the bottleneck, since the number of outliers
|
||
|
and non_outliers are typically non-zero and it makes the code
|
||
|
tougher to follow.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix}
|
||
|
Data on which to apply mask.
|
||
|
|
||
|
mask : ndarray
|
||
|
Mask to be used on X.
|
||
|
|
||
|
len_mask : int
|
||
|
The length of the mask.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mask : ndarray
|
||
|
Array that is safe to use on X.
|
||
|
"""
|
||
|
if len_mask != 0:
|
||
|
return X[safe_mask(X, mask), :]
|
||
|
return np.zeros(shape=(0, X.shape[1]))
|
||
|
|
||
|
|
||
|
def _array_indexing(array, key, key_dtype, axis):
|
||
|
"""Index an array or scipy.sparse consistently across NumPy version."""
|
||
|
if issparse(array) and key_dtype == "bool":
|
||
|
key = np.asarray(key)
|
||
|
if isinstance(key, tuple):
|
||
|
key = list(key)
|
||
|
return array[key] if axis == 0 else array[:, key]
|
||
|
|
||
|
|
||
|
def _pandas_indexing(X, key, key_dtype, axis):
|
||
|
"""Index a pandas dataframe or a series."""
|
||
|
if _is_arraylike_not_scalar(key):
|
||
|
key = np.asarray(key)
|
||
|
|
||
|
if key_dtype == "int" and not (isinstance(key, slice) or np.isscalar(key)):
|
||
|
# using take() instead of iloc[] ensures the return value is a "proper"
|
||
|
# copy that will not raise SettingWithCopyWarning
|
||
|
return X.take(key, axis=axis)
|
||
|
else:
|
||
|
# check whether we should index with loc or iloc
|
||
|
indexer = X.iloc if key_dtype == "int" else X.loc
|
||
|
return indexer[:, key] if axis else indexer[key]
|
||
|
|
||
|
|
||
|
def _list_indexing(X, key, key_dtype):
|
||
|
"""Index a Python list."""
|
||
|
if np.isscalar(key) or isinstance(key, slice):
|
||
|
# key is a slice or a scalar
|
||
|
return X[key]
|
||
|
if key_dtype == "bool":
|
||
|
# key is a boolean array-like
|
||
|
return list(compress(X, key))
|
||
|
# key is a integer array-like of key
|
||
|
return [X[idx] for idx in key]
|
||
|
|
||
|
|
||
|
def _determine_key_type(key, accept_slice=True):
|
||
|
"""Determine the data type of key.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
key : scalar, slice or array-like
|
||
|
The key from which we want to infer the data type.
|
||
|
|
||
|
accept_slice : bool, default=True
|
||
|
Whether or not to raise an error if the key is a slice.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dtype : {'int', 'str', 'bool', None}
|
||
|
Returns the data type of key.
|
||
|
"""
|
||
|
err_msg = (
|
||
|
"No valid specification of the columns. Only a scalar, list or "
|
||
|
"slice of all integers or all strings, or boolean mask is "
|
||
|
"allowed"
|
||
|
)
|
||
|
|
||
|
dtype_to_str = {int: "int", str: "str", bool: "bool", np.bool_: "bool"}
|
||
|
array_dtype_to_str = {
|
||
|
"i": "int",
|
||
|
"u": "int",
|
||
|
"b": "bool",
|
||
|
"O": "str",
|
||
|
"U": "str",
|
||
|
"S": "str",
|
||
|
}
|
||
|
|
||
|
if key is None:
|
||
|
return None
|
||
|
if isinstance(key, tuple(dtype_to_str.keys())):
|
||
|
try:
|
||
|
return dtype_to_str[type(key)]
|
||
|
except KeyError:
|
||
|
raise ValueError(err_msg)
|
||
|
if isinstance(key, slice):
|
||
|
if not accept_slice:
|
||
|
raise TypeError(
|
||
|
"Only array-like or scalar are supported. A Python slice was given."
|
||
|
)
|
||
|
if key.start is None and key.stop is None:
|
||
|
return None
|
||
|
key_start_type = _determine_key_type(key.start)
|
||
|
key_stop_type = _determine_key_type(key.stop)
|
||
|
if key_start_type is not None and key_stop_type is not None:
|
||
|
if key_start_type != key_stop_type:
|
||
|
raise ValueError(err_msg)
|
||
|
if key_start_type is not None:
|
||
|
return key_start_type
|
||
|
return key_stop_type
|
||
|
if isinstance(key, (list, tuple)):
|
||
|
unique_key = set(key)
|
||
|
key_type = {_determine_key_type(elt) for elt in unique_key}
|
||
|
if not key_type:
|
||
|
return None
|
||
|
if len(key_type) != 1:
|
||
|
raise ValueError(err_msg)
|
||
|
return key_type.pop()
|
||
|
if hasattr(key, "dtype"):
|
||
|
try:
|
||
|
return array_dtype_to_str[key.dtype.kind]
|
||
|
except KeyError:
|
||
|
raise ValueError(err_msg)
|
||
|
raise ValueError(err_msg)
|
||
|
|
||
|
|
||
|
def _safe_indexing(X, indices, *, axis=0):
|
||
|
"""Return rows, items or columns of X using indices.
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
This utility is documented, but **private**. This means that
|
||
|
backward compatibility might be broken without any deprecation
|
||
|
cycle.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like, sparse-matrix, list, pandas.DataFrame, pandas.Series
|
||
|
Data from which to sample rows, items or columns. `list` are only
|
||
|
supported when `axis=0`.
|
||
|
indices : bool, int, str, slice, array-like
|
||
|
- If `axis=0`, boolean and integer array-like, integer slice,
|
||
|
and scalar integer are supported.
|
||
|
- If `axis=1`:
|
||
|
- to select a single column, `indices` can be of `int` type for
|
||
|
all `X` types and `str` only for dataframe. The selected subset
|
||
|
will be 1D, unless `X` is a sparse matrix in which case it will
|
||
|
be 2D.
|
||
|
- to select multiples columns, `indices` can be one of the
|
||
|
following: `list`, `array`, `slice`. The type used in
|
||
|
these containers can be one of the following: `int`, 'bool' and
|
||
|
`str`. However, `str` is only supported when `X` is a dataframe.
|
||
|
The selected subset will be 2D.
|
||
|
axis : int, default=0
|
||
|
The axis along which `X` will be subsampled. `axis=0` will select
|
||
|
rows while `axis=1` will select columns.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
subset
|
||
|
Subset of X on axis 0 or 1.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
CSR, CSC, and LIL sparse matrices are supported. COO sparse matrices are
|
||
|
not supported.
|
||
|
"""
|
||
|
if indices is None:
|
||
|
return X
|
||
|
|
||
|
if axis not in (0, 1):
|
||
|
raise ValueError(
|
||
|
"'axis' should be either 0 (to index rows) or 1 (to index "
|
||
|
" column). Got {} instead.".format(axis)
|
||
|
)
|
||
|
|
||
|
indices_dtype = _determine_key_type(indices)
|
||
|
|
||
|
if axis == 0 and indices_dtype == "str":
|
||
|
raise ValueError("String indexing is not supported with 'axis=0'")
|
||
|
|
||
|
if axis == 1 and X.ndim != 2:
|
||
|
raise ValueError(
|
||
|
"'X' should be a 2D NumPy array, 2D sparse matrix or pandas "
|
||
|
"dataframe when indexing the columns (i.e. 'axis=1'). "
|
||
|
"Got {} instead with {} dimension(s).".format(type(X), X.ndim)
|
||
|
)
|
||
|
|
||
|
if axis == 1 and indices_dtype == "str" and not hasattr(X, "loc"):
|
||
|
raise ValueError(
|
||
|
"Specifying the columns using strings is only supported for "
|
||
|
"pandas DataFrames"
|
||
|
)
|
||
|
|
||
|
if hasattr(X, "iloc"):
|
||
|
return _pandas_indexing(X, indices, indices_dtype, axis=axis)
|
||
|
elif hasattr(X, "shape"):
|
||
|
return _array_indexing(X, indices, indices_dtype, axis=axis)
|
||
|
else:
|
||
|
return _list_indexing(X, indices, indices_dtype)
|
||
|
|
||
|
|
||
|
def _safe_assign(X, values, *, row_indexer=None, column_indexer=None):
|
||
|
"""Safe assignment to a numpy array, sparse matrix, or pandas dataframe.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {ndarray, sparse-matrix, dataframe}
|
||
|
Array to be modified. It is expected to be 2-dimensional.
|
||
|
|
||
|
values : ndarray
|
||
|
The values to be assigned to `X`.
|
||
|
|
||
|
row_indexer : array-like, dtype={int, bool}, default=None
|
||
|
A 1-dimensional array to select the rows of interest. If `None`, all
|
||
|
rows are selected.
|
||
|
|
||
|
column_indexer : array-like, dtype={int, bool}, default=None
|
||
|
A 1-dimensional array to select the columns of interest. If `None`, all
|
||
|
columns are selected.
|
||
|
"""
|
||
|
row_indexer = slice(None, None, None) if row_indexer is None else row_indexer
|
||
|
column_indexer = (
|
||
|
slice(None, None, None) if column_indexer is None else column_indexer
|
||
|
)
|
||
|
|
||
|
if hasattr(X, "iloc"): # pandas dataframe
|
||
|
with warnings.catch_warnings():
|
||
|
# pandas >= 1.5 raises a warning when using iloc to set values in a column
|
||
|
# that does not have the same type as the column being set. It happens
|
||
|
# for instance when setting a categorical column with a string.
|
||
|
# In the future the behavior won't change and the warning should disappear.
|
||
|
# TODO(1.3): check if the warning is still raised or remove the filter.
|
||
|
warnings.simplefilter("ignore", FutureWarning)
|
||
|
X.iloc[row_indexer, column_indexer] = values
|
||
|
else: # numpy array or sparse matrix
|
||
|
X[row_indexer, column_indexer] = values
|
||
|
|
||
|
|
||
|
def _get_column_indices(X, key):
|
||
|
"""Get feature column indices for input data X and key.
|
||
|
|
||
|
For accepted values of `key`, see the docstring of
|
||
|
:func:`_safe_indexing_column`.
|
||
|
"""
|
||
|
n_columns = X.shape[1]
|
||
|
|
||
|
key_dtype = _determine_key_type(key)
|
||
|
|
||
|
if isinstance(key, (list, tuple)) and not key:
|
||
|
# we get an empty list
|
||
|
return []
|
||
|
elif key_dtype in ("bool", "int"):
|
||
|
# Convert key into positive indexes
|
||
|
try:
|
||
|
idx = _safe_indexing(np.arange(n_columns), key)
|
||
|
except IndexError as e:
|
||
|
raise ValueError(
|
||
|
"all features must be in [0, {}] or [-{}, 0]".format(
|
||
|
n_columns - 1, n_columns
|
||
|
)
|
||
|
) from e
|
||
|
return np.atleast_1d(idx).tolist()
|
||
|
elif key_dtype == "str":
|
||
|
try:
|
||
|
all_columns = X.columns
|
||
|
except AttributeError:
|
||
|
raise ValueError(
|
||
|
"Specifying the columns using strings is only "
|
||
|
"supported for pandas DataFrames"
|
||
|
)
|
||
|
if isinstance(key, str):
|
||
|
columns = [key]
|
||
|
elif isinstance(key, slice):
|
||
|
start, stop = key.start, key.stop
|
||
|
if start is not None:
|
||
|
start = all_columns.get_loc(start)
|
||
|
if stop is not None:
|
||
|
# pandas indexing with strings is endpoint included
|
||
|
stop = all_columns.get_loc(stop) + 1
|
||
|
else:
|
||
|
stop = n_columns + 1
|
||
|
return list(islice(range(n_columns), start, stop))
|
||
|
else:
|
||
|
columns = list(key)
|
||
|
|
||
|
try:
|
||
|
column_indices = []
|
||
|
for col in columns:
|
||
|
col_idx = all_columns.get_loc(col)
|
||
|
if not isinstance(col_idx, numbers.Integral):
|
||
|
raise ValueError(
|
||
|
f"Selected columns, {columns}, are not unique in dataframe"
|
||
|
)
|
||
|
column_indices.append(col_idx)
|
||
|
|
||
|
except KeyError as e:
|
||
|
raise ValueError("A given column is not a column of the dataframe") from e
|
||
|
|
||
|
return column_indices
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"No valid specification of the columns. Only a "
|
||
|
"scalar, list or slice of all integers or all "
|
||
|
"strings, or boolean mask is allowed"
|
||
|
)
|
||
|
|
||
|
|
||
|
def resample(*arrays, replace=True, n_samples=None, random_state=None, stratify=None):
|
||
|
"""Resample arrays or sparse matrices in a consistent way.
|
||
|
|
||
|
The default strategy implements one step of the bootstrapping
|
||
|
procedure.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
*arrays : sequence of array-like of shape (n_samples,) or \
|
||
|
(n_samples, n_outputs)
|
||
|
Indexable data-structures can be arrays, lists, dataframes or scipy
|
||
|
sparse matrices with consistent first dimension.
|
||
|
|
||
|
replace : bool, default=True
|
||
|
Implements resampling with replacement. If False, this will implement
|
||
|
(sliced) random permutations.
|
||
|
|
||
|
n_samples : int, default=None
|
||
|
Number of samples to generate. If left to None this is
|
||
|
automatically set to the first dimension of the arrays.
|
||
|
If replace is False it should not be larger than the length of
|
||
|
arrays.
|
||
|
|
||
|
random_state : int, RandomState instance or None, default=None
|
||
|
Determines random number generation for shuffling
|
||
|
the data.
|
||
|
Pass an int for reproducible results across multiple function calls.
|
||
|
See :term:`Glossary <random_state>`.
|
||
|
|
||
|
stratify : array-like of shape (n_samples,) or (n_samples, n_outputs), \
|
||
|
default=None
|
||
|
If not None, data is split in a stratified fashion, using this as
|
||
|
the class labels.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
resampled_arrays : sequence of array-like of shape (n_samples,) or \
|
||
|
(n_samples, n_outputs)
|
||
|
Sequence of resampled copies of the collections. The original arrays
|
||
|
are not impacted.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
shuffle : Shuffle arrays or sparse matrices in a consistent way.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
It is possible to mix sparse and dense arrays in the same run::
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> X = np.array([[1., 0.], [2., 1.], [0., 0.]])
|
||
|
>>> y = np.array([0, 1, 2])
|
||
|
|
||
|
>>> from scipy.sparse import coo_matrix
|
||
|
>>> X_sparse = coo_matrix(X)
|
||
|
|
||
|
>>> from sklearn.utils import resample
|
||
|
>>> X, X_sparse, y = resample(X, X_sparse, y, random_state=0)
|
||
|
>>> X
|
||
|
array([[1., 0.],
|
||
|
[2., 1.],
|
||
|
[1., 0.]])
|
||
|
|
||
|
>>> X_sparse
|
||
|
<3x2 sparse matrix of type '<... 'numpy.float64'>'
|
||
|
with 4 stored elements in Compressed Sparse Row format>
|
||
|
|
||
|
>>> X_sparse.toarray()
|
||
|
array([[1., 0.],
|
||
|
[2., 1.],
|
||
|
[1., 0.]])
|
||
|
|
||
|
>>> y
|
||
|
array([0, 1, 0])
|
||
|
|
||
|
>>> resample(y, n_samples=2, random_state=0)
|
||
|
array([0, 1])
|
||
|
|
||
|
Example using stratification::
|
||
|
|
||
|
>>> y = [0, 0, 1, 1, 1, 1, 1, 1, 1]
|
||
|
>>> resample(y, n_samples=5, replace=False, stratify=y,
|
||
|
... random_state=0)
|
||
|
[1, 1, 1, 0, 1]
|
||
|
"""
|
||
|
max_n_samples = n_samples
|
||
|
random_state = check_random_state(random_state)
|
||
|
|
||
|
if len(arrays) == 0:
|
||
|
return None
|
||
|
|
||
|
first = arrays[0]
|
||
|
n_samples = first.shape[0] if hasattr(first, "shape") else len(first)
|
||
|
|
||
|
if max_n_samples is None:
|
||
|
max_n_samples = n_samples
|
||
|
elif (max_n_samples > n_samples) and (not replace):
|
||
|
raise ValueError(
|
||
|
"Cannot sample %d out of arrays with dim %d when replace is False"
|
||
|
% (max_n_samples, n_samples)
|
||
|
)
|
||
|
|
||
|
check_consistent_length(*arrays)
|
||
|
|
||
|
if stratify is None:
|
||
|
if replace:
|
||
|
indices = random_state.randint(0, n_samples, size=(max_n_samples,))
|
||
|
else:
|
||
|
indices = np.arange(n_samples)
|
||
|
random_state.shuffle(indices)
|
||
|
indices = indices[:max_n_samples]
|
||
|
else:
|
||
|
# Code adapted from StratifiedShuffleSplit()
|
||
|
y = check_array(stratify, ensure_2d=False, dtype=None)
|
||
|
if y.ndim == 2:
|
||
|
# for multi-label y, map each distinct row to a string repr
|
||
|
# using join because str(row) uses an ellipsis if len(row) > 1000
|
||
|
y = np.array([" ".join(row.astype("str")) for row in y])
|
||
|
|
||
|
classes, y_indices = np.unique(y, return_inverse=True)
|
||
|
n_classes = classes.shape[0]
|
||
|
|
||
|
class_counts = np.bincount(y_indices)
|
||
|
|
||
|
# Find the sorted list of instances for each class:
|
||
|
# (np.unique above performs a sort, so code is O(n logn) already)
|
||
|
class_indices = np.split(
|
||
|
np.argsort(y_indices, kind="mergesort"), np.cumsum(class_counts)[:-1]
|
||
|
)
|
||
|
|
||
|
n_i = _approximate_mode(class_counts, max_n_samples, random_state)
|
||
|
|
||
|
indices = []
|
||
|
|
||
|
for i in range(n_classes):
|
||
|
indices_i = random_state.choice(class_indices[i], n_i[i], replace=replace)
|
||
|
indices.extend(indices_i)
|
||
|
|
||
|
indices = random_state.permutation(indices)
|
||
|
|
||
|
# convert sparse matrices to CSR for row-based indexing
|
||
|
arrays = [a.tocsr() if issparse(a) else a for a in arrays]
|
||
|
resampled_arrays = [_safe_indexing(a, indices) for a in arrays]
|
||
|
if len(resampled_arrays) == 1:
|
||
|
# syntactic sugar for the unit argument case
|
||
|
return resampled_arrays[0]
|
||
|
else:
|
||
|
return resampled_arrays
|
||
|
|
||
|
|
||
|
def shuffle(*arrays, random_state=None, n_samples=None):
|
||
|
"""Shuffle arrays or sparse matrices in a consistent way.
|
||
|
|
||
|
This is a convenience alias to ``resample(*arrays, replace=False)`` to do
|
||
|
random permutations of the collections.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
*arrays : sequence of indexable data-structures
|
||
|
Indexable data-structures can be arrays, lists, dataframes or scipy
|
||
|
sparse matrices with consistent first dimension.
|
||
|
|
||
|
random_state : int, RandomState instance or None, default=None
|
||
|
Determines random number generation for shuffling
|
||
|
the data.
|
||
|
Pass an int for reproducible results across multiple function calls.
|
||
|
See :term:`Glossary <random_state>`.
|
||
|
|
||
|
n_samples : int, default=None
|
||
|
Number of samples to generate. If left to None this is
|
||
|
automatically set to the first dimension of the arrays. It should
|
||
|
not be larger than the length of arrays.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
shuffled_arrays : sequence of indexable data-structures
|
||
|
Sequence of shuffled copies of the collections. The original arrays
|
||
|
are not impacted.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
resample : Resample arrays or sparse matrices in a consistent way.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
It is possible to mix sparse and dense arrays in the same run::
|
||
|
|
||
|
>>> import numpy as np
|
||
|
>>> X = np.array([[1., 0.], [2., 1.], [0., 0.]])
|
||
|
>>> y = np.array([0, 1, 2])
|
||
|
|
||
|
>>> from scipy.sparse import coo_matrix
|
||
|
>>> X_sparse = coo_matrix(X)
|
||
|
|
||
|
>>> from sklearn.utils import shuffle
|
||
|
>>> X, X_sparse, y = shuffle(X, X_sparse, y, random_state=0)
|
||
|
>>> X
|
||
|
array([[0., 0.],
|
||
|
[2., 1.],
|
||
|
[1., 0.]])
|
||
|
|
||
|
>>> X_sparse
|
||
|
<3x2 sparse matrix of type '<... 'numpy.float64'>'
|
||
|
with 3 stored elements in Compressed Sparse Row format>
|
||
|
|
||
|
>>> X_sparse.toarray()
|
||
|
array([[0., 0.],
|
||
|
[2., 1.],
|
||
|
[1., 0.]])
|
||
|
|
||
|
>>> y
|
||
|
array([2, 1, 0])
|
||
|
|
||
|
>>> shuffle(y, n_samples=2, random_state=0)
|
||
|
array([0, 1])
|
||
|
"""
|
||
|
return resample(
|
||
|
*arrays, replace=False, n_samples=n_samples, random_state=random_state
|
||
|
)
|
||
|
|
||
|
|
||
|
def safe_sqr(X, *, copy=True):
|
||
|
"""Element wise squaring of array-likes and sparse matrices.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, ndarray, sparse matrix}
|
||
|
|
||
|
copy : bool, default=True
|
||
|
Whether to create a copy of X and operate on it or to perform
|
||
|
inplace computation (default behaviour).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
X ** 2 : element wise square
|
||
|
Return the element-wise square of the input.
|
||
|
"""
|
||
|
X = check_array(X, accept_sparse=["csr", "csc", "coo"], ensure_2d=False)
|
||
|
if issparse(X):
|
||
|
if copy:
|
||
|
X = X.copy()
|
||
|
X.data **= 2
|
||
|
else:
|
||
|
if copy:
|
||
|
X = X**2
|
||
|
else:
|
||
|
X **= 2
|
||
|
return X
|
||
|
|
||
|
|
||
|
def _chunk_generator(gen, chunksize):
|
||
|
"""Chunk generator, ``gen`` into lists of length ``chunksize``. The last
|
||
|
chunk may have a length less than ``chunksize``."""
|
||
|
while True:
|
||
|
chunk = list(islice(gen, chunksize))
|
||
|
if chunk:
|
||
|
yield chunk
|
||
|
else:
|
||
|
return
|
||
|
|
||
|
|
||
|
def gen_batches(n, batch_size, *, min_batch_size=0):
|
||
|
"""Generator to create slices containing `batch_size` elements from 0 to `n`.
|
||
|
|
||
|
The last slice may contain less than `batch_size` elements, when
|
||
|
`batch_size` does not divide `n`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int
|
||
|
Size of the sequence.
|
||
|
batch_size : int
|
||
|
Number of elements in each batch.
|
||
|
min_batch_size : int, default=0
|
||
|
Minimum number of elements in each batch.
|
||
|
|
||
|
Yields
|
||
|
------
|
||
|
slice of `batch_size` elements
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
gen_even_slices: Generator to create n_packs slices going up to n.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.utils import gen_batches
|
||
|
>>> list(gen_batches(7, 3))
|
||
|
[slice(0, 3, None), slice(3, 6, None), slice(6, 7, None)]
|
||
|
>>> list(gen_batches(6, 3))
|
||
|
[slice(0, 3, None), slice(3, 6, None)]
|
||
|
>>> list(gen_batches(2, 3))
|
||
|
[slice(0, 2, None)]
|
||
|
>>> list(gen_batches(7, 3, min_batch_size=0))
|
||
|
[slice(0, 3, None), slice(3, 6, None), slice(6, 7, None)]
|
||
|
>>> list(gen_batches(7, 3, min_batch_size=2))
|
||
|
[slice(0, 3, None), slice(3, 7, None)]
|
||
|
"""
|
||
|
if not isinstance(batch_size, numbers.Integral):
|
||
|
raise TypeError(
|
||
|
"gen_batches got batch_size=%s, must be an integer" % batch_size
|
||
|
)
|
||
|
if batch_size <= 0:
|
||
|
raise ValueError("gen_batches got batch_size=%s, must be positive" % batch_size)
|
||
|
start = 0
|
||
|
for _ in range(int(n // batch_size)):
|
||
|
end = start + batch_size
|
||
|
if end + min_batch_size > n:
|
||
|
continue
|
||
|
yield slice(start, end)
|
||
|
start = end
|
||
|
if start < n:
|
||
|
yield slice(start, n)
|
||
|
|
||
|
|
||
|
def gen_even_slices(n, n_packs, *, n_samples=None):
|
||
|
"""Generator to create `n_packs` evenly spaced slices going up to `n`.
|
||
|
|
||
|
If `n_packs` does not divide `n`, except for the first `n % n_packs`
|
||
|
slices, remaining slices may contain fewer elements.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n : int
|
||
|
Size of the sequence.
|
||
|
n_packs : int
|
||
|
Number of slices to generate.
|
||
|
n_samples : int, default=None
|
||
|
Number of samples. Pass `n_samples` when the slices are to be used for
|
||
|
sparse matrix indexing; slicing off-the-end raises an exception, while
|
||
|
it works for NumPy arrays.
|
||
|
|
||
|
Yields
|
||
|
------
|
||
|
`slice` representing a set of indices from 0 to n.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
gen_batches: Generator to create slices containing batch_size elements
|
||
|
from 0 to n.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.utils import gen_even_slices
|
||
|
>>> list(gen_even_slices(10, 1))
|
||
|
[slice(0, 10, None)]
|
||
|
>>> list(gen_even_slices(10, 10))
|
||
|
[slice(0, 1, None), slice(1, 2, None), ..., slice(9, 10, None)]
|
||
|
>>> list(gen_even_slices(10, 5))
|
||
|
[slice(0, 2, None), slice(2, 4, None), ..., slice(8, 10, None)]
|
||
|
>>> list(gen_even_slices(10, 3))
|
||
|
[slice(0, 4, None), slice(4, 7, None), slice(7, 10, None)]
|
||
|
"""
|
||
|
start = 0
|
||
|
if n_packs < 1:
|
||
|
raise ValueError("gen_even_slices got n_packs=%s, must be >=1" % n_packs)
|
||
|
for pack_num in range(n_packs):
|
||
|
this_n = n // n_packs
|
||
|
if pack_num < n % n_packs:
|
||
|
this_n += 1
|
||
|
if this_n > 0:
|
||
|
end = start + this_n
|
||
|
if n_samples is not None:
|
||
|
end = min(n_samples, end)
|
||
|
yield slice(start, end, None)
|
||
|
start = end
|
||
|
|
||
|
|
||
|
def tosequence(x):
|
||
|
"""Cast iterable x to a Sequence, avoiding a copy if possible.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : iterable
|
||
|
The iterable to be converted.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x : Sequence
|
||
|
If `x` is a NumPy array, it returns it as a `ndarray`. If `x`
|
||
|
is a `Sequence`, `x` is returned as-is. If `x` is from any other
|
||
|
type, `x` is returned casted as a list.
|
||
|
"""
|
||
|
if isinstance(x, np.ndarray):
|
||
|
return np.asarray(x)
|
||
|
elif isinstance(x, Sequence):
|
||
|
return x
|
||
|
else:
|
||
|
return list(x)
|
||
|
|
||
|
|
||
|
def _to_object_array(sequence):
|
||
|
"""Convert sequence to a 1-D NumPy array of object dtype.
|
||
|
|
||
|
numpy.array constructor has a similar use but it's output
|
||
|
is ambiguous. It can be 1-D NumPy array of object dtype if
|
||
|
the input is a ragged array, but if the input is a list of
|
||
|
equal length arrays, then the output is a 2D numpy.array.
|
||
|
_to_object_array solves this ambiguity by guarantying that
|
||
|
the output is a 1-D NumPy array of objects for any input.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
sequence : array-like of shape (n_elements,)
|
||
|
The sequence to be converted.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
out : ndarray of shape (n_elements,), dtype=object
|
||
|
The converted sequence into a 1-D NumPy array of object dtype.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from sklearn.utils import _to_object_array
|
||
|
>>> _to_object_array([np.array([0]), np.array([1])])
|
||
|
array([array([0]), array([1])], dtype=object)
|
||
|
>>> _to_object_array([np.array([0]), np.array([1, 2])])
|
||
|
array([array([0]), array([1, 2])], dtype=object)
|
||
|
>>> _to_object_array([np.array([0]), np.array([1, 2])])
|
||
|
array([array([0]), array([1, 2])], dtype=object)
|
||
|
"""
|
||
|
out = np.empty(len(sequence), dtype=object)
|
||
|
out[:] = sequence
|
||
|
return out
|
||
|
|
||
|
|
||
|
def indices_to_mask(indices, mask_length):
|
||
|
"""Convert list of indices to boolean mask.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
indices : list-like
|
||
|
List of integers treated as indices.
|
||
|
mask_length : int
|
||
|
Length of boolean mask to be generated.
|
||
|
This parameter must be greater than max(indices).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
mask : 1d boolean nd-array
|
||
|
Boolean array that is True where indices are present, else False.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.utils import indices_to_mask
|
||
|
>>> indices = [1, 2 , 3, 4]
|
||
|
>>> indices_to_mask(indices, 5)
|
||
|
array([False, True, True, True, True])
|
||
|
"""
|
||
|
if mask_length <= np.max(indices):
|
||
|
raise ValueError("mask_length must be greater than max(indices)")
|
||
|
|
||
|
mask = np.zeros(mask_length, dtype=bool)
|
||
|
mask[indices] = True
|
||
|
|
||
|
return mask
|
||
|
|
||
|
|
||
|
def _message_with_time(source, message, time):
|
||
|
"""Create one line message for logging purposes.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
source : str
|
||
|
String indicating the source or the reference of the message.
|
||
|
|
||
|
message : str
|
||
|
Short message.
|
||
|
|
||
|
time : int
|
||
|
Time in seconds.
|
||
|
"""
|
||
|
start_message = "[%s] " % source
|
||
|
|
||
|
# adapted from joblib.logger.short_format_time without the Windows -.1s
|
||
|
# adjustment
|
||
|
if time > 60:
|
||
|
time_str = "%4.1fmin" % (time / 60)
|
||
|
else:
|
||
|
time_str = " %5.1fs" % time
|
||
|
end_message = " %s, total=%s" % (message, time_str)
|
||
|
dots_len = 70 - len(start_message) - len(end_message)
|
||
|
return "%s%s%s" % (start_message, dots_len * ".", end_message)
|
||
|
|
||
|
|
||
|
@contextmanager
|
||
|
def _print_elapsed_time(source, message=None):
|
||
|
"""Log elapsed time to stdout when the context is exited.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
source : str
|
||
|
String indicating the source or the reference of the message.
|
||
|
|
||
|
message : str, default=None
|
||
|
Short message. If None, nothing will be printed.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
context_manager
|
||
|
Prints elapsed time upon exit if verbose.
|
||
|
"""
|
||
|
if message is None:
|
||
|
yield
|
||
|
else:
|
||
|
start = timeit.default_timer()
|
||
|
yield
|
||
|
print(_message_with_time(source, message, timeit.default_timer() - start))
|
||
|
|
||
|
|
||
|
def get_chunk_n_rows(row_bytes, *, max_n_rows=None, working_memory=None):
|
||
|
"""Calculate how many rows can be processed within `working_memory`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
row_bytes : int
|
||
|
The expected number of bytes of memory that will be consumed
|
||
|
during the processing of each row.
|
||
|
max_n_rows : int, default=None
|
||
|
The maximum return value.
|
||
|
working_memory : int or float, default=None
|
||
|
The number of rows to fit inside this number of MiB will be
|
||
|
returned. When None (default), the value of
|
||
|
``sklearn.get_config()['working_memory']`` is used.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
int
|
||
|
The number of rows which can be processed within `working_memory`.
|
||
|
|
||
|
Warns
|
||
|
-----
|
||
|
Issues a UserWarning if `row_bytes exceeds `working_memory` MiB.
|
||
|
"""
|
||
|
|
||
|
if working_memory is None:
|
||
|
working_memory = get_config()["working_memory"]
|
||
|
|
||
|
chunk_n_rows = int(working_memory * (2**20) // row_bytes)
|
||
|
if max_n_rows is not None:
|
||
|
chunk_n_rows = min(chunk_n_rows, max_n_rows)
|
||
|
if chunk_n_rows < 1:
|
||
|
warnings.warn(
|
||
|
"Could not adhere to working_memory config. "
|
||
|
"Currently %.0fMiB, %.0fMiB required."
|
||
|
% (working_memory, np.ceil(row_bytes * 2**-20))
|
||
|
)
|
||
|
chunk_n_rows = 1
|
||
|
return chunk_n_rows
|
||
|
|
||
|
|
||
|
def _is_pandas_na(x):
|
||
|
"""Test if x is pandas.NA.
|
||
|
|
||
|
We intentionally do not use this function to return `True` for `pd.NA` in
|
||
|
`is_scalar_nan`, because estimators that support `pd.NA` are the exception
|
||
|
rather than the rule at the moment. When `pd.NA` is more universally
|
||
|
supported, we may reconsider this decision.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : any type
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
boolean
|
||
|
"""
|
||
|
with suppress(ImportError):
|
||
|
from pandas import NA
|
||
|
|
||
|
return x is NA
|
||
|
|
||
|
return False
|
||
|
|
||
|
|
||
|
def is_scalar_nan(x):
|
||
|
"""Test if x is NaN.
|
||
|
|
||
|
This function is meant to overcome the issue that np.isnan does not allow
|
||
|
non-numerical types as input, and that np.nan is not float('nan').
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x : any type
|
||
|
Any scalar value.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
bool
|
||
|
Returns true if x is NaN, and false otherwise.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from sklearn.utils import is_scalar_nan
|
||
|
>>> is_scalar_nan(np.nan)
|
||
|
True
|
||
|
>>> is_scalar_nan(float("nan"))
|
||
|
True
|
||
|
>>> is_scalar_nan(None)
|
||
|
False
|
||
|
>>> is_scalar_nan("")
|
||
|
False
|
||
|
>>> is_scalar_nan([np.nan])
|
||
|
False
|
||
|
"""
|
||
|
return isinstance(x, numbers.Real) and math.isnan(x)
|
||
|
|
||
|
|
||
|
def _approximate_mode(class_counts, n_draws, rng):
|
||
|
"""Computes approximate mode of multivariate hypergeometric.
|
||
|
|
||
|
This is an approximation to the mode of the multivariate
|
||
|
hypergeometric given by class_counts and n_draws.
|
||
|
It shouldn't be off by more than one.
|
||
|
|
||
|
It is the mostly likely outcome of drawing n_draws many
|
||
|
samples from the population given by class_counts.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
class_counts : ndarray of int
|
||
|
Population per class.
|
||
|
n_draws : int
|
||
|
Number of draws (samples to draw) from the overall population.
|
||
|
rng : random state
|
||
|
Used to break ties.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
sampled_classes : ndarray of int
|
||
|
Number of samples drawn from each class.
|
||
|
np.sum(sampled_classes) == n_draws
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from sklearn.utils import _approximate_mode
|
||
|
>>> _approximate_mode(class_counts=np.array([4, 2]), n_draws=3, rng=0)
|
||
|
array([2, 1])
|
||
|
>>> _approximate_mode(class_counts=np.array([5, 2]), n_draws=4, rng=0)
|
||
|
array([3, 1])
|
||
|
>>> _approximate_mode(class_counts=np.array([2, 2, 2, 1]),
|
||
|
... n_draws=2, rng=0)
|
||
|
array([0, 1, 1, 0])
|
||
|
>>> _approximate_mode(class_counts=np.array([2, 2, 2, 1]),
|
||
|
... n_draws=2, rng=42)
|
||
|
array([1, 1, 0, 0])
|
||
|
"""
|
||
|
rng = check_random_state(rng)
|
||
|
# this computes a bad approximation to the mode of the
|
||
|
# multivariate hypergeometric given by class_counts and n_draws
|
||
|
continuous = class_counts / class_counts.sum() * n_draws
|
||
|
# floored means we don't overshoot n_samples, but probably undershoot
|
||
|
floored = np.floor(continuous)
|
||
|
# we add samples according to how much "left over" probability
|
||
|
# they had, until we arrive at n_samples
|
||
|
need_to_add = int(n_draws - floored.sum())
|
||
|
if need_to_add > 0:
|
||
|
remainder = continuous - floored
|
||
|
values = np.sort(np.unique(remainder))[::-1]
|
||
|
# add according to remainder, but break ties
|
||
|
# randomly to avoid biases
|
||
|
for value in values:
|
||
|
(inds,) = np.where(remainder == value)
|
||
|
# if we need_to_add less than what's in inds
|
||
|
# we draw randomly from them.
|
||
|
# if we need to add more, we add them all and
|
||
|
# go to the next value
|
||
|
add_now = min(len(inds), need_to_add)
|
||
|
inds = rng.choice(inds, size=add_now, replace=False)
|
||
|
floored[inds] += 1
|
||
|
need_to_add -= add_now
|
||
|
if need_to_add == 0:
|
||
|
break
|
||
|
return floored.astype(int)
|
||
|
|
||
|
|
||
|
def check_matplotlib_support(caller_name):
|
||
|
"""Raise ImportError with detailed error message if mpl is not installed.
|
||
|
|
||
|
Plot utilities like any of the Display's plotting functions should lazily import
|
||
|
matplotlib and call this helper before any computation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
caller_name : str
|
||
|
The name of the caller that requires matplotlib.
|
||
|
"""
|
||
|
try:
|
||
|
import matplotlib # noqa
|
||
|
except ImportError as e:
|
||
|
raise ImportError(
|
||
|
"{} requires matplotlib. You can install matplotlib with "
|
||
|
"`pip install matplotlib`".format(caller_name)
|
||
|
) from e
|
||
|
|
||
|
|
||
|
def check_pandas_support(caller_name):
|
||
|
"""Raise ImportError with detailed error message if pandas is not installed.
|
||
|
|
||
|
Plot utilities like :func:`fetch_openml` should lazily import
|
||
|
pandas and call this helper before any computation.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
caller_name : str
|
||
|
The name of the caller that requires pandas.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
pandas
|
||
|
The pandas package.
|
||
|
"""
|
||
|
try:
|
||
|
import pandas # noqa
|
||
|
|
||
|
return pandas
|
||
|
except ImportError as e:
|
||
|
raise ImportError("{} requires pandas.".format(caller_name)) from e
|