Intelegentny_Pszczelarz/.venv/Lib/site-packages/tensorflow/python/autograph/operators/data_structures.py

348 lines
12 KiB
Python
Raw Normal View History

2023-06-19 00:49:18 +02:00
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Operators specific to data structures: list append, subscripts, etc."""
import collections
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import list_ops
from tensorflow.python.ops import tensor_array_ops
# TODO(mdan): Once control flow supports objects, repackage as a class.
def new_list(iterable=None):
"""The list constructor.
Args:
iterable: Optional elements to fill the list with.
Returns:
A list-like object. The exact return value depends on the initial elements.
"""
if iterable:
elements = tuple(iterable)
else:
elements = ()
if elements:
# When the list contains elements, it is assumed to be a "Python" lvalue
# list.
return _py_list_new(elements)
return tf_tensor_list_new(elements)
def tf_tensor_array_new(elements, element_dtype=None, element_shape=None):
"""Overload of new_list that stages a Tensor list creation."""
elements = tuple(ops.convert_to_tensor(el) for el in elements)
all_dtypes = set(el.dtype for el in elements)
if len(all_dtypes) == 1:
inferred_dtype, = tuple(all_dtypes)
if element_dtype is not None and element_dtype != inferred_dtype:
raise ValueError(
'incompatible dtype; specified: {}, inferred from {}: {}'.format(
element_dtype, elements, inferred_dtype))
elif len(all_dtypes) > 1:
raise ValueError(
'TensorArray requires all elements to have the same dtype:'
' {}'.format(elements))
else:
if element_dtype is None:
raise ValueError('dtype is required to create an empty TensorArray')
all_shapes = set(tuple(el.shape.as_list()) for el in elements)
if len(all_shapes) == 1:
inferred_shape, = tuple(all_shapes)
if element_shape is not None and element_shape != inferred_shape:
raise ValueError(
'incompatible shape; specified: {}, inferred from {}: {}'.format(
element_shape, elements, inferred_shape))
elif len(all_shapes) > 1:
raise ValueError(
'TensorArray requires all elements to have the same shape:'
' {}'.format(elements))
# TODO(mdan): We may want to allow different shapes with infer_shape=False.
else:
inferred_shape = None
if element_dtype is None:
element_dtype = inferred_dtype
if element_shape is None:
element_shape = inferred_shape
l = tensor_array_ops.TensorArray(
dtype=element_dtype,
size=len(elements),
dynamic_size=True,
infer_shape=(element_shape is None),
element_shape=element_shape)
for i, el in enumerate(elements):
l = l.write(i, el)
return l
def tf_tensor_list_new(elements, element_dtype=None, element_shape=None):
"""Overload of new_list that stages a Tensor list creation."""
if tensor_util.is_tf_type(elements):
if element_shape is not None:
raise ValueError(
'element shape may not be specified when creating list from tensor')
element_shape = array_ops.shape(elements)[1:]
l = list_ops.tensor_list_from_tensor(elements, element_shape=element_shape)
return l
elements = tuple(ops.convert_to_tensor(el) for el in elements)
all_dtypes = set(el.dtype for el in elements)
if len(all_dtypes) == 1:
inferred_dtype = tuple(all_dtypes)[0]
if element_dtype is not None and element_dtype != inferred_dtype:
raise ValueError(
'incompatible dtype; specified: {}, inferred from {}: {}'.format(
element_dtype, elements, inferred_dtype))
elif all_dtypes:
# Heterogeneous lists are ok.
if element_dtype is not None:
raise ValueError(
'specified dtype {} is inconsistent with that of elements {}'.format(
element_dtype, elements))
inferred_dtype = dtypes.variant
else:
inferred_dtype = dtypes.variant
all_shapes = set(tuple(el.shape.as_list()) for el in elements)
if len(all_shapes) == 1:
inferred_shape = array_ops.shape(elements[0])
if element_shape is not None and element_shape != inferred_shape:
raise ValueError(
'incompatible shape; specified: {}, inferred from {}: {}'.format(
element_shape, elements, inferred_shape))
elif all_shapes:
# Heterogeneous lists are ok.
if element_shape is not None:
raise ValueError(
'specified shape {} is inconsistent with that of elements {}'.format(
element_shape, elements))
inferred_shape = constant_op.constant(-1) # unknown shape, by convention
else:
inferred_shape = constant_op.constant(-1) # unknown shape, by convention
if element_dtype is None:
element_dtype = inferred_dtype
if element_shape is None:
element_shape = inferred_shape
element_shape = ops.convert_to_tensor(element_shape, dtype=dtypes.int32)
l = list_ops.empty_tensor_list(
element_shape=element_shape, element_dtype=element_dtype)
for el in elements:
l = list_ops.tensor_list_push_back(l, el)
return l
def _py_list_new(elements):
"""Overload of new_list that creates a Python list."""
return list(elements)
def list_append(list_, x):
"""The list append function.
Note: it is unspecified where list_ will be mutated or not. If list_ is
a TensorFlow entity, it will not be typically mutated. If list_ is a plain
list, it will be. In general, if the list is mutated then the return value
should point to the original entity.
Args:
list_: An entity that supports append semantics.
x: The element to append.
Returns:
Same as list_, after the append was performed.
Raises:
ValueError: if list_ is not of a known list-like type.
"""
if isinstance(list_, tensor_array_ops.TensorArray):
return _tf_tensorarray_append(list_, x)
elif tensor_util.is_tf_type(list_):
if list_.dtype == dtypes.variant:
return _tf_tensor_list_append(list_, x)
else:
raise ValueError(
'tensor lists are expected to be Tensors with dtype=tf.variant,'
' instead found %s' % list_)
else:
return _py_list_append(list_, x)
def _tf_tensor_list_append(list_, x):
"""Overload of list_append that stages a Tensor list write."""
def empty_list_of_elements_like_x():
tensor_x = ops.convert_to_tensor(x)
return list_ops.empty_tensor_list(
element_shape=array_ops.shape(tensor_x),
element_dtype=tensor_x.dtype)
list_ = control_flow_ops.cond(
list_ops.tensor_list_length(list_) > 0,
lambda: list_,
empty_list_of_elements_like_x,
)
return list_ops.tensor_list_push_back(list_, x)
def _tf_tensorarray_append(list_, x):
"""Overload of list_append that stages a TensorArray write."""
return list_.write(list_.size(), x)
def _py_list_append(list_, x):
"""Overload of list_append that executes a Python list append."""
# Revert to the original call.
list_.append(x)
return list_
class ListPopOpts(
collections.namedtuple('ListPopOpts', ('element_dtype', 'element_shape'))):
pass
def list_pop(list_, i, opts):
"""The list pop function.
Note: it is unspecified where list_ will be mutated or not. If list_ is
a TensorFlow entity, it will not be typically mutated. If list_ is a plain
list, it will be. In general, if the list is mutated then the return value
should point to the original entity.
Args:
list_: An entity that supports pop semantics.
i: Optional index to pop from. May be None.
opts: A ListPopOpts.
Returns:
Tuple (x, out_list_):
out_list_: same as list_, after the removal was performed.
x: the removed element value.
Raises:
ValueError: if list_ is not of a known list-like type or the operation is
not supported for that type.
"""
assert isinstance(opts, ListPopOpts)
if isinstance(list_, tensor_array_ops.TensorArray):
raise ValueError('TensorArray does not support item removal')
elif tensor_util.is_tf_type(list_):
if list_.dtype == dtypes.variant:
return _tf_tensor_list_pop(list_, i, opts)
else:
raise ValueError(
'tensor lists are expected to be Tensors with dtype=tf.variant,'
' instead found %s' % list_)
else:
return _py_list_pop(list_, i)
def _tf_tensor_list_pop(list_, i, opts):
"""Overload of list_pop that stages a Tensor list pop."""
if i is not None:
raise NotImplementedError('tensor lists only support removing from the end')
if opts.element_dtype is None:
raise ValueError('cannot pop from a list without knowing its element '
'type; use set_element_type to annotate it')
if opts.element_shape is None:
raise ValueError('cannot pop from a list without knowing its element '
'shape; use set_element_type to annotate it')
list_out, x = list_ops.tensor_list_pop_back(
list_, element_dtype=opts.element_dtype)
x.set_shape(opts.element_shape)
return list_out, x
def _py_list_pop(list_, i):
"""Overload of list_pop that executes a Python list append."""
if i is None:
x = list_.pop()
else:
x = list_.pop(i)
return list_, x
# TODO(mdan): Look into reducing duplication between all these containers.
class ListStackOpts(
collections.namedtuple('ListStackOpts',
('element_dtype', 'original_call'))):
pass
def list_stack(list_, opts):
"""The list stack function.
This does not have a direct correspondent in Python. The closest idiom to
this is tf.append or np.stack. It's different from those in the sense that it
accepts a Tensor list, rather than a list of tensors. It can also accept
TensorArray. When the target is anything else, the dispatcher will rely on
ctx.original_call for fallback.
Args:
list_: An entity that supports append semantics.
opts: A ListStackOpts object.
Returns:
The output of the stack operation, typically a Tensor.
"""
assert isinstance(opts, ListStackOpts)
if isinstance(list_, tensor_array_ops.TensorArray):
return _tf_tensorarray_stack(list_)
elif tensor_util.is_tf_type(list_):
if list_.dtype == dtypes.variant:
return _tf_tensor_list_stack(list_, opts)
else:
# No-op for primitive Tensor arguments.
return list_
else:
return _py_list_stack(list_, opts)
def _tf_tensorarray_stack(list_):
"""Overload of list_stack that stages a TensorArray stack."""
return list_.stack()
def _tf_tensor_list_stack(list_, opts):
"""Overload of list_stack that stages a Tensor list write."""
if opts.element_dtype is None:
raise ValueError('cannot stack a list without knowing its element type;'
' use set_element_type to annotate it')
return list_ops.tensor_list_stack(list_, element_dtype=opts.element_dtype)
def _py_list_stack(list_, opts):
"""Overload of list_stack that executes a Python list append."""
# Revert to the original call.
return opts.original_call(list_)