Intelegentny_Pszczelarz/.venv/Lib/site-packages/tensorflow/python/keras/optimizer_v2/nadam.py

220 lines
9.1 KiB
Python
Raw Normal View History

2023-06-19 00:49:18 +02:00
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Nadam optimizer implementation."""
# pylint: disable=g-classes-have-attributes
from tensorflow.python.framework import ops
from tensorflow.python.keras import backend_config
from tensorflow.python.keras.optimizer_v2 import learning_rate_schedule
from tensorflow.python.keras.optimizer_v2 import optimizer_v2
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import variables as tf_variables
from tensorflow.python.util.tf_export import keras_export
@keras_export('keras.optimizers.Nadam')
class Nadam(optimizer_v2.OptimizerV2):
r"""Optimizer that implements the NAdam algorithm.
Much like Adam is essentially RMSprop with momentum, Nadam is Adam with
Nesterov momentum.
Args:
learning_rate: A Tensor or a floating point value. The learning rate.
beta_1: A float value or a constant float tensor. The exponential decay
rate for the 1st moment estimates.
beta_2: A float value or a constant float tensor. The exponential decay
rate for the exponentially weighted infinity norm.
epsilon: A small constant for numerical stability.
name: Optional name for the operations created when applying gradients.
Defaults to `"Nadam"`.
**kwargs: Keyword arguments. Allowed to be one of
`"clipnorm"` or `"clipvalue"`.
`"clipnorm"` (float) clips gradients by norm; `"clipvalue"` (float) clips
gradients by value.
Usage Example:
>>> opt = tf.keras.optimizers.Nadam(learning_rate=0.2)
>>> var1 = tf.Variable(10.0)
>>> loss = lambda: (var1 ** 2) / 2.0
>>> step_count = opt.minimize(loss, [var1]).numpy()
>>> "{:.1f}".format(var1.numpy())
9.8
Reference:
- [Dozat, 2015](http://cs229.stanford.edu/proj2015/054_report.pdf).
"""
_HAS_AGGREGATE_GRAD = True
def __init__(self,
learning_rate=0.001,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-7,
name='Nadam',
**kwargs):
# Backwards compatibility with keras NAdam optimizer.
kwargs['decay'] = kwargs.pop('schedule_decay', 0.004)
learning_rate = kwargs.get('lr', learning_rate)
if isinstance(learning_rate, learning_rate_schedule.LearningRateSchedule):
raise ValueError('The Nadam optimizer does not support '
'tf.keras.optimizers.LearningRateSchedules as the '
'learning rate.')
super(Nadam, self).__init__(name, **kwargs)
self._set_hyper('learning_rate', kwargs.get('lr', learning_rate))
self._set_hyper('decay', self._initial_decay)
self._set_hyper('beta_1', beta_1)
self._set_hyper('beta_2', beta_2)
self.epsilon = epsilon or backend_config.epsilon()
self._m_cache = None
def _create_slots(self, var_list):
var_dtype = var_list[0].dtype.base_dtype
if self._m_cache is None:
self._m_cache = self.add_weight(
'momentum_cache',
shape=[],
dtype=var_dtype,
initializer='ones',
trainable=False,
aggregation=tf_variables.VariableAggregation.ONLY_FIRST_REPLICA)
self._weights.append(self._m_cache)
# Separate for-loops to respect the ordering of slot variables from v1.
for var in var_list:
# Create slots for the first moments.
self.add_slot(var, 'm')
for var in var_list:
# Create slots for the second moments.
self.add_slot(var, 'v')
def _prepare_local(self, var_device, var_dtype, apply_state):
lr_t = array_ops.identity(self._get_hyper('learning_rate', var_dtype))
beta_1_t = array_ops.identity(self._get_hyper('beta_1', var_dtype))
beta_2_t = array_ops.identity(self._get_hyper('beta_2', var_dtype))
local_step = math_ops.cast(self.iterations + 1, var_dtype)
next_step = math_ops.cast(self.iterations + 2, var_dtype)
decay_base = math_ops.cast(0.96, var_dtype)
m_t = beta_1_t * (1. - 0.5 * (
math_ops.pow(decay_base, self._initial_decay * local_step)))
m_t_1 = beta_1_t * (1. - 0.5 * (
math_ops.pow(decay_base, self._initial_decay * next_step)))
m_schedule_new = math_ops.cast(self._m_cache_read, var_dtype) * m_t
if var_dtype is self._m_cache.dtype:
m_schedule_new = array_ops.identity(state_ops.assign(
self._m_cache, m_schedule_new, use_locking=self._use_locking))
m_schedule_next = m_schedule_new * m_t_1
apply_state[(var_device, var_dtype)] = dict(
lr_t=lr_t,
neg_lr_t=-lr_t, # pylint: disable=invalid-unary-operand-type
epsilon=ops.convert_to_tensor_v2_with_dispatch(self.epsilon, var_dtype),
beta_1_t=beta_1_t,
beta_2_t=beta_2_t,
m_t=m_t,
m_t_1=m_t_1,
one_minus_beta_1_t=1 - beta_1_t,
one_minus_beta_2_t=1 - beta_2_t,
one_minus_m_t=1. - m_t,
one_minus_m_schedule_new=1. - m_schedule_new,
one_minus_m_schedule_next=1. - m_schedule_next,
v_t_prime_denominator=1. - math_ops.pow(beta_2_t, local_step),
)
def _prepare(self, var_list):
# Get the value of the momentum cache before starting to apply gradients.
self._m_cache_read = array_ops.identity(self._m_cache)
return super(Nadam, self)._prepare(var_list)
def _resource_apply_dense(self, grad, var, apply_state=None):
var_device, var_dtype = var.device, var.dtype.base_dtype
coefficients = ((apply_state or {}).get((var_device, var_dtype))
or self._fallback_apply_state(var_device, var_dtype))
m = self.get_slot(var, 'm')
v = self.get_slot(var, 'v')
g_prime = grad / coefficients['one_minus_m_schedule_new']
m_t = (coefficients['beta_1_t'] * m +
coefficients['one_minus_beta_1_t'] * grad)
m_t = state_ops.assign(m, m_t, use_locking=self._use_locking)
m_t_prime = m_t / coefficients['one_minus_m_schedule_next']
v_t = (coefficients['beta_2_t'] * v +
coefficients['one_minus_beta_2_t'] * math_ops.square(grad))
v_t = state_ops.assign(v, v_t, use_locking=self._use_locking)
v_t_prime = v_t / coefficients['v_t_prime_denominator']
m_t_bar = (coefficients['one_minus_m_t'] * g_prime +
coefficients['m_t_1'] * m_t_prime)
var_t = var - coefficients['lr_t'] * m_t_bar / (
math_ops.sqrt(v_t_prime) + coefficients['epsilon'])
return state_ops.assign(var, var_t, use_locking=self._use_locking).op
def _resource_apply_sparse(self, grad, var, indices, apply_state=None):
var_device, var_dtype = var.device, var.dtype.base_dtype
coefficients = ((apply_state or {}).get((var_device, var_dtype))
or self._fallback_apply_state(var_device, var_dtype))
m = self.get_slot(var, 'm')
v = self.get_slot(var, 'v')
g_prime = grad / coefficients['one_minus_m_schedule_new']
# m_t = beta1 * m + (1 - beta1) * g_t
m_scaled_g_values = grad * coefficients['one_minus_beta_1_t']
m_t = state_ops.assign(m, m * coefficients['beta_1_t'],
use_locking=self._use_locking)
with ops.control_dependencies([m_t]):
m_t = self._resource_scatter_add(m, indices, m_scaled_g_values)
m_t_slice = array_ops.gather(m_t, indices)
m_t_prime = m_t_slice / coefficients['one_minus_m_schedule_next']
m_t_bar = (coefficients['one_minus_m_t'] * g_prime +
coefficients['m_t_1'] * m_t_prime)
# v_t = beta2 * v + (1 - beta2) * (g_t * g_t)
v_scaled_g_values = (grad * grad) * coefficients['one_minus_beta_2_t']
v_t = state_ops.assign(v, v * coefficients['beta_2_t'],
use_locking=self._use_locking)
with ops.control_dependencies([v_t]):
v_t = self._resource_scatter_add(v, indices, v_scaled_g_values)
v_t_slice = array_ops.gather(v_t, indices)
v_t_prime = v_t_slice / coefficients['v_t_prime_denominator']
v_prime_sqrt_plus_eps = math_ops.sqrt(v_t_prime) + coefficients['epsilon']
var_update = self._resource_scatter_add(
var, indices,
coefficients['neg_lr_t'] * m_t_bar / v_prime_sqrt_plus_eps)
return control_flow_ops.group(*[var_update, m_t_bar, v_t])
def get_config(self):
config = super(Nadam, self).get_config()
config.update({
'learning_rate': self._serialize_hyperparameter('learning_rate'),
'decay': self._initial_decay,
'beta_1': self._serialize_hyperparameter('beta_1'),
'beta_2': self._serialize_hyperparameter('beta_2'),
'epsilon': self.epsilon,
})
return config