85 lines
3.6 KiB
Python
85 lines
3.6 KiB
Python
|
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""Python module for MLIR functions exported by pybind11."""
|
||
|
|
||
|
# pylint: disable=invalid-import-order, g-bad-import-order, wildcard-import, unused-import, undefined-variable
|
||
|
from tensorflow.python import pywrap_tensorflow
|
||
|
from tensorflow.python.eager import context
|
||
|
from tensorflow.python._pywrap_mlir import *
|
||
|
|
||
|
|
||
|
def import_graphdef(graphdef,
|
||
|
pass_pipeline,
|
||
|
show_debug_info,
|
||
|
input_names=None,
|
||
|
input_data_types=None,
|
||
|
input_data_shapes=None,
|
||
|
output_names=[]):
|
||
|
if input_names is not None:
|
||
|
return ImportGraphDef(
|
||
|
str(graphdef).encode('utf-8'), pass_pipeline.encode('utf-8'),
|
||
|
show_debug_info, ','.join(input_names).encode('utf-8'),
|
||
|
','.join(input_data_types).encode('utf-8'),
|
||
|
':'.join(input_data_shapes).encode('utf-8'),
|
||
|
','.join(output_names).encode('utf-8'))
|
||
|
return ImportGraphDef(
|
||
|
str(graphdef).encode('utf-8'), pass_pipeline.encode('utf-8'),
|
||
|
show_debug_info)
|
||
|
|
||
|
|
||
|
def import_function(concrete_function, pass_pipeline, show_debug_info):
|
||
|
ctxt = context.context()
|
||
|
ctxt.ensure_initialized()
|
||
|
return ImportFunction(ctxt._handle,
|
||
|
str(concrete_function.function_def).encode('utf-8'),
|
||
|
pass_pipeline.encode('utf-8'), show_debug_info)
|
||
|
|
||
|
|
||
|
def experimental_convert_saved_model_to_mlir(saved_model_path, exported_names,
|
||
|
show_debug_info):
|
||
|
return ExperimentalConvertSavedModelToMlir(
|
||
|
str(saved_model_path).encode('utf-8'),
|
||
|
str(exported_names).encode('utf-8'), show_debug_info)
|
||
|
|
||
|
|
||
|
def experimental_convert_saved_model_v1_to_mlir_lite(saved_model_path,
|
||
|
exported_names, tags,
|
||
|
upgrade_legacy,
|
||
|
show_debug_info):
|
||
|
return ExperimentalConvertSavedModelV1ToMlirLite(
|
||
|
str(saved_model_path).encode('utf-8'),
|
||
|
str(exported_names).encode('utf-8'),
|
||
|
str(tags).encode('utf-8'), upgrade_legacy, show_debug_info)
|
||
|
|
||
|
|
||
|
def experimental_convert_saved_model_v1_to_mlir(saved_model_path,
|
||
|
exported_names, tags,
|
||
|
lift_variables, upgrade_legacy,
|
||
|
show_debug_info):
|
||
|
return ExperimentalConvertSavedModelV1ToMlir(
|
||
|
str(saved_model_path).encode('utf-8'),
|
||
|
str(exported_names).encode('utf-8'),
|
||
|
str(tags).encode('utf-8'), lift_variables, upgrade_legacy,
|
||
|
show_debug_info)
|
||
|
|
||
|
|
||
|
def experimental_run_pass_pipeline(mlir_txt, pass_pipeline, show_debug_info):
|
||
|
return ExperimentalRunPassPipeline(
|
||
|
mlir_txt.encode('utf-8'), pass_pipeline.encode('utf-8'), show_debug_info)
|
||
|
|
||
|
|
||
|
def experimental_write_bytecode(filename, mlir_txt):
|
||
|
return ExperimentalWriteBytecode(filename.encode('utf-8'), mlir_txt.encode())
|