# Copyright 2018 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Definitions of Mesh and ResourceEnv.""" from __future__ import annotations import collections import contextlib import functools import math import threading from typing import Any, Hashable, NamedTuple, Set, Sequence, Tuple, Union import numpy as np from jax._src import config as jax_config from jax._src import xla_bridge as xb from jax._src import util from jax._src.lib import xla_client as xc MeshAxisName = Any ResourceAxisName = Hashable class Loop(NamedTuple): name: ResourceAxisName length: int def show_axes(axes): return ", ".join(sorted(f"`{a}`" for a in axes)) class ResourceEnv(NamedTuple): physical_mesh: Mesh loops: Tuple[Loop, ...] def with_mesh(self, mesh: Mesh): overlap = set(mesh.axis_names) & (self.resource_axes - set(self.physical_mesh.axis_names)) if overlap: raise ValueError(f"Cannot update the mesh of the current resource " f"environment. The new mesh shadows already defined axes " f"{show_axes(overlap)}") return self._replace(physical_mesh=mesh) def with_extra_loop(self, loop: Loop): if loop.name in self.resource_axes: raise ValueError(f"Cannot extend the resource environment with loop named " f"`{loop.name}`. An axis of this name is already defined!") return self._replace(loops=self.loops + (loop,)) @property def physical_resource_axes(self) -> Set[ResourceAxisName]: return set(self.physical_mesh.axis_names) @property def loop_resource_axes(self) -> Set[ResourceAxisName]: return {loop.name for loop in self.loops} @property def resource_axes(self) -> Set[ResourceAxisName]: return self.physical_resource_axes | self.loop_resource_axes @property def shape(self): shape = self.physical_mesh.shape shape.update(self.loops) return shape @property def local_shape(self): shape = self.physical_mesh.local_mesh.shape shape.update(self.loops) return shape def __repr__(self): return f"ResourceEnv({self.physical_mesh!r}, {self.loops!r})" class Mesh(contextlib.ContextDecorator): """Declare the hardware resources available in the scope of this manager. In particular, all ``axis_names`` become valid resource names inside the managed block and can be used e.g. in the ``in_axis_resources`` argument of :py:func:`jax.experimental.pjit.pjit`. Also see JAX's multi-process programming model (https://jax.readthedocs.io/en/latest/multi_process.html) and the Distributed arrays and automatic parallelization tutorial (https://jax.readthedocs.io/en/latest/notebooks/Distributed_arrays_and_automatic_parallelization.html) If you are compiling in multiple threads, make sure that the ``with Mesh`` context manager is inside the function that the threads will execute. Args: devices: A NumPy ndarray object containing JAX device objects (as obtained e.g. from :py:func:`jax.devices`). axis_names: A sequence of resource axis names to be assigned to the dimensions of the ``devices`` argument. Its length should match the rank of ``devices``. Example: >>> from jax.experimental.pjit import pjit >>> from jax.sharding import Mesh >>> from jax.sharding import PartitionSpec as P >>> import numpy as np ... >>> inp = np.arange(16).reshape((8, 2)) >>> devices = np.array(jax.devices()).reshape(4, 2) ... >>> # Declare a 2D mesh with axes `x` and `y`. >>> global_mesh = Mesh(devices, ('x', 'y')) >>> # Use the mesh object directly as a context manager. >>> with global_mesh: ... out = pjit(lambda x: x, in_shardings=None, out_shardings=None)(inp) >>> # Initialize the Mesh and use the mesh as the context manager. >>> with Mesh(devices, ('x', 'y')) as global_mesh: ... out = pjit(lambda x: x, in_shardings=None, out_shardings=None)(inp) >>> # Also you can use it as `with ... as ...`. >>> global_mesh = Mesh(devices, ('x', 'y')) >>> with global_mesh as m: ... out = pjit(lambda x: x, in_shardings=None, out_shardings=None)(inp) >>> # You can also use it as `with Mesh(...)`. >>> with Mesh(devices, ('x', 'y')): ... out = pjit(lambda x: x, in_shardings=None, out_shardings=None)(inp) """ devices: np.ndarray axis_names: Tuple[MeshAxisName, ...] def __init__(self, devices: Union[np.ndarray, Sequence[xc.Device]], axis_names: Union[str, Sequence[MeshAxisName]]): if not isinstance(devices, np.ndarray): devices = np.array(devices) if isinstance(axis_names, str): axis_names = (axis_names,) assert devices.ndim == len(axis_names) # TODO: Make sure that devices are unique? At least with the quick and # dirty check that the array size is not larger than the number of # available devices? self.devices = devices.copy() self.devices.flags.writeable = False self.axis_names = tuple(axis_names) def __eq__(self, other): if not isinstance(other, Mesh): return False # This is a performance optimization. Comparing thousands of devices # can be expensive. if id(self) == id(other): return True return (self.axis_names == other.axis_names and np.array_equal(self.devices, other.devices)) def __hash__(self): if not hasattr(self, '_hash'): self._hash = hash( (self.axis_names, tuple(self.devices.flat), self.devices.shape)) return self._hash def __setattr__(self, name, value): if hasattr(self, name): raise RuntimeError("Cannot reassign attributes of immutable mesh objects") super().__setattr__(name, value) def __enter__(self): new_env = thread_resources.stack[-1].with_mesh(self) thread_resources.stack.append(new_env) thread_resources.env = new_env jax_config.update_thread_local_jit_state( mesh_context_manager=tuple(t.physical_mesh for t in thread_resources.stack if not t.physical_mesh.empty)) return self def __exit__(self, exc_type, exc_value, traceback): thread_resources.stack.pop() thread_resources.env = thread_resources.stack[-1] jax_config.update_thread_local_jit_state( mesh_context_manager=tuple(t.physical_mesh for t in thread_resources.stack if not t.physical_mesh.empty)) return False @property def shape(self): return collections.OrderedDict( (name, size) for name, size in util.safe_zip(self.axis_names, self.devices.shape)) @property def size(self): return math.prod(self.shape.values()) @property def empty(self): return self.devices.ndim == 0 @functools.cached_property def is_multi_process(self): return self.devices.size != len(self.local_devices) @functools.cached_property def local_mesh(self): return self._local_mesh(xb.process_index()) def _local_mesh(self, process_index): if self.empty: return self is_local_device = np.vectorize( lambda d: d.process_index == process_index, otypes=[bool])(self.devices) subcube_indices = [] # We take the smallest slice of each dimension that doesn't skip any local device. for axis in range(self.devices.ndim): other_axes = util.tuple_delete(tuple(range(self.devices.ndim)), axis) # NOTE: This re-reduces over many axes multiple times, so we could definitely # optimize it, but I hope it won't be a bottleneck anytime soon. local_slices = is_local_device.any(other_axes, keepdims=False) nonzero_indices = np.flatnonzero(local_slices) start, end = int(np.min(nonzero_indices)), int(np.max(nonzero_indices)) subcube_indices.append(slice(start, end + 1)) subcube_indices = tuple(subcube_indices) # We only end up with all conditions being true if the local devices formed a # subcube of the full array. This is because we were biased towards taking a # "hull" spanned by the devices, and in case the local devices don't form a # subcube that hull will contain non-local devices. if not is_local_device[subcube_indices].all(): raise ValueError( "When passing host local inputs to pjit or xmap, devices " "connected to a single host must form a contiguous subcube of the " "global device mesh") return Mesh(self.devices[subcube_indices], self.axis_names) @functools.cached_property def device_ids(self): assert not self.empty return np.vectorize(lambda d: d.id, otypes=[int])(self.devices) @functools.cached_property def _local_devices_set(self): return set(self.local_devices) @functools.cached_property def _flat_devices_tuple(self): return tuple(self.devices.flat) @functools.cached_property def _flat_devices_set(self): return set(self.devices.flat) @functools.cached_property def _repr(self): if self.empty: return "Mesh(device_ids=[], axis_names=())" return f"Mesh(device_ids={self.device_ids!r}, axis_names={self.axis_names!r})" def __repr__(self): return self._repr @functools.cached_property def local_devices(self): return [d for d in self.devices.flat if d.process_index == d.client.process_index()] EMPTY_ENV = ResourceEnv(Mesh(np.empty((), dtype=object), ()), ()) class _ThreadResourcesLocalState(threading.local): def __init__(self): self.stack = [EMPTY_ENV] self.env = self.stack[-1] thread_resources = _ThreadResourcesLocalState()