# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """DenseNet models for Keras. Reference: - [Densely Connected Convolutional Networks]( https://arxiv.org/abs/1608.06993) (CVPR 2017) """ import tensorflow.compat.v2 as tf from keras import backend from keras.applications import imagenet_utils from keras.engine import training from keras.layers import VersionAwareLayers from keras.utils import data_utils from keras.utils import layer_utils # isort: off from tensorflow.python.util.tf_export import keras_export BASE_WEIGHTS_PATH = ( "https://storage.googleapis.com/tensorflow/keras-applications/densenet/" ) DENSENET121_WEIGHT_PATH = ( BASE_WEIGHTS_PATH + "densenet121_weights_tf_dim_ordering_tf_kernels.h5" ) DENSENET121_WEIGHT_PATH_NO_TOP = ( BASE_WEIGHTS_PATH + "densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5" ) DENSENET169_WEIGHT_PATH = ( BASE_WEIGHTS_PATH + "densenet169_weights_tf_dim_ordering_tf_kernels.h5" ) DENSENET169_WEIGHT_PATH_NO_TOP = ( BASE_WEIGHTS_PATH + "densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5" ) DENSENET201_WEIGHT_PATH = ( BASE_WEIGHTS_PATH + "densenet201_weights_tf_dim_ordering_tf_kernels.h5" ) DENSENET201_WEIGHT_PATH_NO_TOP = ( BASE_WEIGHTS_PATH + "densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5" ) layers = VersionAwareLayers() def dense_block(x, blocks, name): """A dense block. Args: x: input tensor. blocks: integer, the number of building blocks. name: string, block label. Returns: Output tensor for the block. """ for i in range(blocks): x = conv_block(x, 32, name=name + "_block" + str(i + 1)) return x def transition_block(x, reduction, name): """A transition block. Args: x: input tensor. reduction: float, compression rate at transition layers. name: string, block label. Returns: output tensor for the block. """ bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 x = layers.BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name=name + "_bn" )(x) x = layers.Activation("relu", name=name + "_relu")(x) x = layers.Conv2D( int(backend.int_shape(x)[bn_axis] * reduction), 1, use_bias=False, name=name + "_conv", )(x) x = layers.AveragePooling2D(2, strides=2, name=name + "_pool")(x) return x def conv_block(x, growth_rate, name): """A building block for a dense block. Args: x: input tensor. growth_rate: float, growth rate at dense layers. name: string, block label. Returns: Output tensor for the block. """ bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 x1 = layers.BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name=name + "_0_bn" )(x) x1 = layers.Activation("relu", name=name + "_0_relu")(x1) x1 = layers.Conv2D( 4 * growth_rate, 1, use_bias=False, name=name + "_1_conv" )(x1) x1 = layers.BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name=name + "_1_bn" )(x1) x1 = layers.Activation("relu", name=name + "_1_relu")(x1) x1 = layers.Conv2D( growth_rate, 3, padding="same", use_bias=False, name=name + "_2_conv" )(x1) x = layers.Concatenate(axis=bn_axis, name=name + "_concat")([x, x1]) return x def DenseNet( blocks, include_top=True, weights="imagenet", input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation="softmax", ): """Instantiates the DenseNet architecture. Reference: - [Densely Connected Convolutional Networks]( https://arxiv.org/abs/1608.06993) (CVPR 2017) This function returns a Keras image classification model, optionally loaded with weights pre-trained on ImageNet. For image classification use cases, see [this page for detailed examples]( https://keras.io/api/applications/#usage-examples-for-image-classification-models). For transfer learning use cases, make sure to read the [guide to transfer learning & fine-tuning]( https://keras.io/guides/transfer_learning/). Note: each Keras Application expects a specific kind of input preprocessing. For DenseNet, call `tf.keras.applications.densenet.preprocess_input` on your inputs before passing them to the model. `densenet.preprocess_input` will scale pixels between 0 and 1 and then will normalize each channel with respect to the ImageNet dataset statistics. Args: blocks: numbers of building blocks for the four dense layers. include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `'channels_last'` data format) or `(3, 224, 224)` (with `'channels_first'` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(200, 200, 3)` would be one valid value. pooling: optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer. When loading pretrained weights, `classifier_activation` can only be `None` or `"softmax"`. Returns: A `keras.Model` instance. """ if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)): raise ValueError( "The `weights` argument should be either " "`None` (random initialization), `imagenet` " "(pre-training on ImageNet), " "or the path to the weights file to be loaded." ) if weights == "imagenet" and include_top and classes != 1000: raise ValueError( 'If using `weights` as `"imagenet"` with `include_top`' " as true, `classes` should be 1000" ) # Determine proper input shape input_shape = imagenet_utils.obtain_input_shape( input_shape, default_size=224, min_size=32, data_format=backend.image_data_format(), require_flatten=include_top, weights=weights, ) if input_tensor is None: img_input = layers.Input(shape=input_shape) else: if not backend.is_keras_tensor(input_tensor): img_input = layers.Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 x = layers.ZeroPadding2D(padding=((3, 3), (3, 3)))(img_input) x = layers.Conv2D(64, 7, strides=2, use_bias=False, name="conv1/conv")(x) x = layers.BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name="conv1/bn" )(x) x = layers.Activation("relu", name="conv1/relu")(x) x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)))(x) x = layers.MaxPooling2D(3, strides=2, name="pool1")(x) x = dense_block(x, blocks[0], name="conv2") x = transition_block(x, 0.5, name="pool2") x = dense_block(x, blocks[1], name="conv3") x = transition_block(x, 0.5, name="pool3") x = dense_block(x, blocks[2], name="conv4") x = transition_block(x, 0.5, name="pool4") x = dense_block(x, blocks[3], name="conv5") x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name="bn")(x) x = layers.Activation("relu", name="relu")(x) if include_top: x = layers.GlobalAveragePooling2D(name="avg_pool")(x) imagenet_utils.validate_activation(classifier_activation, weights) x = layers.Dense( classes, activation=classifier_activation, name="predictions" )(x) else: if pooling == "avg": x = layers.GlobalAveragePooling2D(name="avg_pool")(x) elif pooling == "max": x = layers.GlobalMaxPooling2D(name="max_pool")(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = layer_utils.get_source_inputs(input_tensor) else: inputs = img_input # Create model. if blocks == [6, 12, 24, 16]: model = training.Model(inputs, x, name="densenet121") elif blocks == [6, 12, 32, 32]: model = training.Model(inputs, x, name="densenet169") elif blocks == [6, 12, 48, 32]: model = training.Model(inputs, x, name="densenet201") else: model = training.Model(inputs, x, name="densenet") # Load weights. if weights == "imagenet": if include_top: if blocks == [6, 12, 24, 16]: weights_path = data_utils.get_file( "densenet121_weights_tf_dim_ordering_tf_kernels.h5", DENSENET121_WEIGHT_PATH, cache_subdir="models", file_hash="9d60b8095a5708f2dcce2bca79d332c7", ) elif blocks == [6, 12, 32, 32]: weights_path = data_utils.get_file( "densenet169_weights_tf_dim_ordering_tf_kernels.h5", DENSENET169_WEIGHT_PATH, cache_subdir="models", file_hash="d699b8f76981ab1b30698df4c175e90b", ) elif blocks == [6, 12, 48, 32]: weights_path = data_utils.get_file( "densenet201_weights_tf_dim_ordering_tf_kernels.h5", DENSENET201_WEIGHT_PATH, cache_subdir="models", file_hash="1ceb130c1ea1b78c3bf6114dbdfd8807", ) else: if blocks == [6, 12, 24, 16]: weights_path = data_utils.get_file( "densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5", DENSENET121_WEIGHT_PATH_NO_TOP, cache_subdir="models", file_hash="30ee3e1110167f948a6b9946edeeb738", ) elif blocks == [6, 12, 32, 32]: weights_path = data_utils.get_file( "densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5", DENSENET169_WEIGHT_PATH_NO_TOP, cache_subdir="models", file_hash="b8c4d4c20dd625c148057b9ff1c1176b", ) elif blocks == [6, 12, 48, 32]: weights_path = data_utils.get_file( "densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5", DENSENET201_WEIGHT_PATH_NO_TOP, cache_subdir="models", file_hash="c13680b51ded0fb44dff2d8f86ac8bb1", ) model.load_weights(weights_path) elif weights is not None: model.load_weights(weights) return model @keras_export( "keras.applications.densenet.DenseNet121", "keras.applications.DenseNet121" ) def DenseNet121( include_top=True, weights="imagenet", input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation="softmax", ): """Instantiates the Densenet121 architecture.""" return DenseNet( [6, 12, 24, 16], include_top, weights, input_tensor, input_shape, pooling, classes, classifier_activation, ) @keras_export( "keras.applications.densenet.DenseNet169", "keras.applications.DenseNet169" ) def DenseNet169( include_top=True, weights="imagenet", input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation="softmax", ): """Instantiates the Densenet169 architecture.""" return DenseNet( [6, 12, 32, 32], include_top, weights, input_tensor, input_shape, pooling, classes, classifier_activation, ) @keras_export( "keras.applications.densenet.DenseNet201", "keras.applications.DenseNet201" ) def DenseNet201( include_top=True, weights="imagenet", input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation="softmax", ): """Instantiates the Densenet201 architecture.""" return DenseNet( [6, 12, 48, 32], include_top, weights, input_tensor, input_shape, pooling, classes, classifier_activation, ) @keras_export("keras.applications.densenet.preprocess_input") def preprocess_input(x, data_format=None): return imagenet_utils.preprocess_input( x, data_format=data_format, mode="torch" ) @keras_export("keras.applications.densenet.decode_predictions") def decode_predictions(preds, top=5): return imagenet_utils.decode_predictions(preds, top=top) preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format( mode="", ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TORCH, error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC, ) decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ DOC = """ Reference: - [Densely Connected Convolutional Networks]( https://arxiv.org/abs/1608.06993) (CVPR 2017) Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at `~/.keras/keras.json`. Note: each Keras Application expects a specific kind of input preprocessing. For DenseNet, call `tf.keras.applications.densenet.preprocess_input` on your inputs before passing them to the model. Args: include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `'channels_last'` data format) or `(3, 224, 224)` (with `'channels_first'` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(200, 200, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer. When loading pretrained weights, `classifier_activation` can only be `None` or `"softmax"`. Returns: A Keras model instance. """ setattr(DenseNet121, "__doc__", DenseNet121.__doc__ + DOC) setattr(DenseNet169, "__doc__", DenseNet169.__doc__ + DOC) setattr(DenseNet201, "__doc__", DenseNet201.__doc__ + DOC)