# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """VGG16 model for Keras. Reference: - [Very Deep Convolutional Networks for Large-Scale Image Recognition] (https://arxiv.org/abs/1409.1556) (ICLR 2015) """ import tensorflow.compat.v2 as tf from keras import backend from keras.applications import imagenet_utils from keras.engine import training from keras.layers import VersionAwareLayers from keras.utils import data_utils from keras.utils import layer_utils # isort: off from tensorflow.python.util.tf_export import keras_export WEIGHTS_PATH = ( "https://storage.googleapis.com/tensorflow/keras-applications/" "vgg16/vgg16_weights_tf_dim_ordering_tf_kernels.h5" ) WEIGHTS_PATH_NO_TOP = ( "https://storage.googleapis.com/tensorflow/" "keras-applications/vgg16/" "vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5" ) layers = VersionAwareLayers() @keras_export("keras.applications.vgg16.VGG16", "keras.applications.VGG16") def VGG16( include_top=True, weights="imagenet", input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation="softmax", ): """Instantiates the VGG16 model. Reference: - [Very Deep Convolutional Networks for Large-Scale Image Recognition]( https://arxiv.org/abs/1409.1556) (ICLR 2015) For image classification use cases, see [this page for detailed examples]( https://keras.io/api/applications/#usage-examples-for-image-classification-models). For transfer learning use cases, make sure to read the [guide to transfer learning & fine-tuning]( https://keras.io/guides/transfer_learning/). The default input size for this model is 224x224. Note: each Keras Application expects a specific kind of input preprocessing. For VGG16, call `tf.keras.applications.vgg16.preprocess_input` on your inputs before passing them to the model. `vgg16.preprocess_input` will convert the input images from RGB to BGR, then will zero-center each color channel with respect to the ImageNet dataset, without scaling. Args: include_top: whether to include the 3 fully-connected layers at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or `(3, 224, 224)` (with `channels_first` data format). It should have exactly 3 input channels, and width and height should be no smaller than 32. E.g. `(200, 200, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer. When loading pretrained weights, `classifier_activation` can only be `None` or `"softmax"`. Returns: A `keras.Model` instance. """ if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)): raise ValueError( "The `weights` argument should be either " "`None` (random initialization), `imagenet` " "(pre-training on ImageNet), " "or the path to the weights file to be loaded. Received: " f"weights={weights}" ) if weights == "imagenet" and include_top and classes != 1000: raise ValueError( 'If using `weights` as `"imagenet"` with `include_top` ' "as true, `classes` should be 1000. " f"Received `classes={classes}`" ) # Determine proper input shape input_shape = imagenet_utils.obtain_input_shape( input_shape, default_size=224, min_size=32, data_format=backend.image_data_format(), require_flatten=include_top, weights=weights, ) if input_tensor is None: img_input = layers.Input(shape=input_shape) else: if not backend.is_keras_tensor(input_tensor): img_input = layers.Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor # Block 1 x = layers.Conv2D( 64, (3, 3), activation="relu", padding="same", name="block1_conv1" )(img_input) x = layers.Conv2D( 64, (3, 3), activation="relu", padding="same", name="block1_conv2" )(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block1_pool")(x) # Block 2 x = layers.Conv2D( 128, (3, 3), activation="relu", padding="same", name="block2_conv1" )(x) x = layers.Conv2D( 128, (3, 3), activation="relu", padding="same", name="block2_conv2" )(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block2_pool")(x) # Block 3 x = layers.Conv2D( 256, (3, 3), activation="relu", padding="same", name="block3_conv1" )(x) x = layers.Conv2D( 256, (3, 3), activation="relu", padding="same", name="block3_conv2" )(x) x = layers.Conv2D( 256, (3, 3), activation="relu", padding="same", name="block3_conv3" )(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block3_pool")(x) # Block 4 x = layers.Conv2D( 512, (3, 3), activation="relu", padding="same", name="block4_conv1" )(x) x = layers.Conv2D( 512, (3, 3), activation="relu", padding="same", name="block4_conv2" )(x) x = layers.Conv2D( 512, (3, 3), activation="relu", padding="same", name="block4_conv3" )(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block4_pool")(x) # Block 5 x = layers.Conv2D( 512, (3, 3), activation="relu", padding="same", name="block5_conv1" )(x) x = layers.Conv2D( 512, (3, 3), activation="relu", padding="same", name="block5_conv2" )(x) x = layers.Conv2D( 512, (3, 3), activation="relu", padding="same", name="block5_conv3" )(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block5_pool")(x) if include_top: # Classification block x = layers.Flatten(name="flatten")(x) x = layers.Dense(4096, activation="relu", name="fc1")(x) x = layers.Dense(4096, activation="relu", name="fc2")(x) imagenet_utils.validate_activation(classifier_activation, weights) x = layers.Dense( classes, activation=classifier_activation, name="predictions" )(x) else: if pooling == "avg": x = layers.GlobalAveragePooling2D()(x) elif pooling == "max": x = layers.GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = layer_utils.get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = training.Model(inputs, x, name="vgg16") # Load weights. if weights == "imagenet": if include_top: weights_path = data_utils.get_file( "vgg16_weights_tf_dim_ordering_tf_kernels.h5", WEIGHTS_PATH, cache_subdir="models", file_hash="64373286793e3c8b2b4e3219cbf3544b", ) else: weights_path = data_utils.get_file( "vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5", WEIGHTS_PATH_NO_TOP, cache_subdir="models", file_hash="6d6bbae143d832006294945121d1f1fc", ) model.load_weights(weights_path) elif weights is not None: model.load_weights(weights) return model @keras_export("keras.applications.vgg16.preprocess_input") def preprocess_input(x, data_format=None): return imagenet_utils.preprocess_input( x, data_format=data_format, mode="caffe" ) @keras_export("keras.applications.vgg16.decode_predictions") def decode_predictions(preds, top=5): return imagenet_utils.decode_predictions(preds, top=top) preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format( mode="", ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_CAFFE, error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC, ) decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__