# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A simple functional keras model with one layer.""" import numpy as np import tensorflow.compat.v2 as tf import keras from keras.distribute import model_collection_base from keras.optimizers.legacy import gradient_descent _BATCH_SIZE = 10 def _get_data_for_simple_models(): x_train = tf.constant(np.random.rand(1000, 3), dtype=tf.float32) y_train = tf.constant(np.random.rand(1000, 5), dtype=tf.float32) x_predict = tf.constant(np.random.rand(1000, 3), dtype=tf.float32) return x_train, y_train, x_predict class SimpleFunctionalModel(model_collection_base.ModelAndInput): """A simple functional model and its inputs.""" def get_model(self, **kwargs): output_name = "output_1" x = keras.layers.Input(shape=(3,), dtype=tf.float32) y = keras.layers.Dense(5, dtype=tf.float32, name=output_name)(x) model = keras.Model(inputs=x, outputs=y) optimizer = gradient_descent.SGD(learning_rate=0.001) model.compile(loss="mse", metrics=["mae"], optimizer=optimizer) return model def get_data(self): return _get_data_for_simple_models() def get_batch_size(self): return _BATCH_SIZE class SimpleSequentialModel(model_collection_base.ModelAndInput): """A simple sequential model and its inputs.""" def get_model(self, **kwargs): output_name = "output_1" model = keras.Sequential() y = keras.layers.Dense( 5, dtype=tf.float32, name=output_name, input_dim=3 ) model.add(y) optimizer = gradient_descent.SGD(learning_rate=0.001) model.compile(loss="mse", metrics=["mae"], optimizer=optimizer) return model def get_data(self): return _get_data_for_simple_models() def get_batch_size(self): return _BATCH_SIZE class _SimpleModel(keras.Model): def __init__(self): super().__init__() self._dense_layer = keras.layers.Dense(5, dtype=tf.float32) def call(self, inputs): return self._dense_layer(inputs) class SimpleSubclassModel(model_collection_base.ModelAndInput): """A simple subclass model and its data.""" def get_model(self, **kwargs): model = _SimpleModel() optimizer = gradient_descent.SGD(learning_rate=0.001) model.compile( loss="mse", metrics=["mae"], cloning=False, optimizer=optimizer ) return model def get_data(self): return _get_data_for_simple_models() def get_batch_size(self): return _BATCH_SIZE class _SimpleModule(tf.Module): def __init__(self): self.v = tf.Variable(3.0) @tf.function def __call__(self, x): return self.v * x class SimpleTFModuleModel(model_collection_base.ModelAndInput): """A simple model based on tf.Module and its data.""" def get_model(self, **kwargs): model = _SimpleModule() return model def get_data(self): return _get_data_for_simple_models() def get_batch_size(self): return _BATCH_SIZE