# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A layer that produces a dense `Tensor` based on given `feature_columns`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import tensorflow.compat.v2 as tf from keras import backend from keras.feature_column import base_feature_layer as kfc from keras.saving.legacy.saved_model import json_utils # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export(v1=["keras.layers.DenseFeatures"]) class DenseFeatures(kfc._BaseFeaturesLayer): """A layer that produces a dense `Tensor` based on given `feature_columns`. Generally a single example in training data is described with FeatureColumns. At the first layer of the model, this column-oriented data should be converted to a single `Tensor`. This layer can be called multiple times with different features. This is the V1 version of this layer that uses variable_scope's or partitioner to create variables which works well with PartitionedVariables. Variable scopes are deprecated in V2, so the V2 version uses name_scopes instead. But currently that lacks support for partitioned variables. Use this if you need partitioned variables. Use the partitioner argument if you have a Keras model and uses `tf.compat.v1.keras.estimator.model_to_estimator` for training. Example: ```python price = tf.feature_column.numeric_column('price') keywords_embedded = tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_hash_bucket("keywords", 10K), dimension=16) columns = [price, keywords_embedded, ...] partitioner = tf.compat.v1.fixed_size_partitioner(num_shards=4) feature_layer = tf.compat.v1.keras.layers.DenseFeatures( feature_columns=columns, partitioner=partitioner) features = tf.io.parse_example( ..., features=tf.feature_column.make_parse_example_spec(columns)) dense_tensor = feature_layer(features) for units in [128, 64, 32]: dense_tensor = tf.compat.v1.keras.layers.Dense( units, activation='relu')(dense_tensor) prediction = tf.compat.v1.keras.layers.Dense(1)(dense_tensor) ``` """ def __init__( self, feature_columns, trainable=True, name=None, partitioner=None, **kwargs ): """Constructs a DenseFeatures layer. Args: feature_columns: An iterable containing the FeatureColumns to use as inputs to your model. All items should be instances of classes derived from `DenseColumn` such as `numeric_column`, `embedding_column`, `bucketized_column`, `indicator_column`. If you have categorical features, you can wrap them with an `embedding_column` or `indicator_column`. trainable: Boolean, whether the layer's variables will be updated via gradient descent during training. name: Name to give to the DenseFeatures. partitioner: Partitioner for input layer. Defaults to None. **kwargs: Keyword arguments to construct a layer. Raises: ValueError: if an item in `feature_columns` is not a `DenseColumn`. """ super().__init__( feature_columns=feature_columns, trainable=trainable, name=name, partitioner=partitioner, expected_column_type=tf.__internal__.feature_column.DenseColumn, **kwargs ) @property def _is_feature_layer(self): return True @property def _tracking_metadata(self): """String stored in metadata field in the SavedModel proto. Returns: A serialized JSON storing information necessary for recreating this layer. """ metadata = json.loads(super()._tracking_metadata) metadata["_is_feature_layer"] = True return json.dumps(metadata, default=json_utils.get_json_type) def _target_shape(self, input_shape, total_elements): return (input_shape[0], total_elements) def call(self, features, cols_to_output_tensors=None, training=None): """Returns a dense tensor corresponding to the `feature_columns`. Example usage: >>> t1 = tf.feature_column.embedding_column( ... tf.feature_column.categorical_column_with_hash_bucket("t1", 2), ... dimension=8) >>> t2 = tf.feature_column.numeric_column('t2') >>> feature_layer = tf.compat.v1.keras.layers.DenseFeatures([t1, t2]) >>> features = {"t1": tf.constant(["a", "b"]), ... "t2": tf.constant([1, 2])} >>> dense_tensor = feature_layer(features, training=True) Args: features: A mapping from key to tensors. `FeatureColumn`s look up via these keys. For example `numeric_column('price')` will look at 'price' key in this dict. Values can be a `SparseTensor` or a `Tensor` depends on corresponding `FeatureColumn`. cols_to_output_tensors: If not `None`, this will be filled with a dict mapping feature columns to output tensors created. training: Python boolean or None, indicating whether to the layer is being run in training mode. This argument is passed to the call method of any `FeatureColumn` that takes a `training` argument. For example, if a `FeatureColumn` performed dropout, the column could expose a `training` argument to control whether the dropout should be applied. If `None`, defaults to `tf.keras.backend.learning_phase()`. Returns: A `Tensor` which represents input layer of a model. Its shape is (batch_size, first_layer_dimension) and its dtype is `float32`. first_layer_dimension is determined based on given `feature_columns`. Raises: ValueError: If features are not a dictionary. """ if training is None: training = backend.learning_phase() if not isinstance(features, dict): raise ValueError( "We expected a dictionary here. Instead we got: ", features ) transformation_cache = ( tf.__internal__.feature_column.FeatureTransformationCache(features) ) output_tensors = [] for column in self._feature_columns: with backend.name_scope(column.name): try: tensor = column.get_dense_tensor( transformation_cache, self._state_manager, training=training, ) except TypeError: tensor = column.get_dense_tensor( transformation_cache, self._state_manager ) processed_tensors = self._process_dense_tensor(column, tensor) if cols_to_output_tensors is not None: cols_to_output_tensors[column] = processed_tensors output_tensors.append(processed_tensors) return self._verify_and_concat_tensors(output_tensors)