# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains the AlphaDropout layer.""" import tensorflow.compat.v2 as tf from keras import backend from keras.engine import base_layer from keras.utils import tf_utils # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export("keras.layers.AlphaDropout") class AlphaDropout(base_layer.BaseRandomLayer): """Applies Alpha Dropout to the input. Alpha Dropout is a `Dropout` that keeps mean and variance of inputs to their original values, in order to ensure the self-normalizing property even after this dropout. Alpha Dropout fits well to Scaled Exponential Linear Units by randomly setting activations to the negative saturation value. Args: rate: float, drop probability (as with `Dropout`). The multiplicative noise will have standard deviation `sqrt(rate / (1 - rate))`. seed: Integer, optional random seed to enable deterministic behavior. Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode (adding dropout) or in inference mode (doing nothing). Input shape: Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. Output shape: Same shape as input. """ def __init__(self, rate, noise_shape=None, seed=None, **kwargs): super().__init__(seed=seed, **kwargs) self.rate = rate self.noise_shape = noise_shape self.seed = seed self.supports_masking = True def _get_noise_shape(self, inputs): return self.noise_shape if self.noise_shape else tf.shape(inputs) def call(self, inputs, training=None): if 0.0 < self.rate < 1.0: noise_shape = self._get_noise_shape(inputs) def dropped_inputs(inputs=inputs, rate=self.rate): alpha = 1.6732632423543772848170429916717 scale = 1.0507009873554804934193349852946 alpha_p = -alpha * scale kept_idx = tf.greater_equal( self._random_generator.random_uniform(noise_shape), rate ) kept_idx = tf.cast(kept_idx, inputs.dtype) # Get affine transformation params a = ((1 - rate) * (1 + rate * alpha_p**2)) ** -0.5 b = -a * alpha_p * rate # Apply mask x = inputs * kept_idx + alpha_p * (1 - kept_idx) # Do affine transformation return a * x + b return backend.in_train_phase( dropped_inputs, inputs, training=training ) return inputs def get_config(self): config = {"rate": self.rate, "seed": self.seed} base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @tf_utils.shape_type_conversion def compute_output_shape(self, input_shape): return input_shape