# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains the Permute layer.""" import copy import tensorflow.compat.v2 as tf from keras.engine.base_layer import Layer from keras.engine.input_spec import InputSpec # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export("keras.layers.Permute") class Permute(Layer): """Permutes the dimensions of the input according to a given pattern. Useful e.g. connecting RNNs and convnets. Example: ```python model = Sequential() model.add(Permute((2, 1), input_shape=(10, 64))) # now: model.output_shape == (None, 64, 10) # note: `None` is the batch dimension ``` Args: dims: Tuple of integers. Permutation pattern does not include the samples dimension. Indexing starts at 1. For instance, `(2, 1)` permutes the first and second dimensions of the input. Input shape: Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. Output shape: Same as the input shape, but with the dimensions re-ordered according to the specified pattern. """ def __init__(self, dims, **kwargs): super().__init__(**kwargs) self.dims = tuple(dims) if sorted(dims) != list(range(1, len(dims) + 1)): raise ValueError( "Invalid permutation argument `dims` for Permute Layer. " "The set of indices in `dims` must be consecutive and start " f"from 1. Received dims={dims}" ) self.input_spec = InputSpec(ndim=len(self.dims) + 1) def compute_output_shape(self, input_shape): input_shape = tf.TensorShape(input_shape).as_list() output_shape = copy.copy(input_shape) for i, dim in enumerate(self.dims): target_dim = input_shape[dim] output_shape[i + 1] = target_dim return tf.TensorShape(output_shape) def call(self, inputs): return tf.transpose(inputs, perm=(0,) + self.dims) def get_config(self): config = {"dims": self.dims} base_config = super().get_config() return dict(list(base_config.items()) + list(config.items()))