// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Author: kenton@google.com (Kenton Varda) // Based on original Protocol Buffers design by // Sanjay Ghemawat, Jeff Dean, and others. // // This header is logically internal, but is made public because it is used // from protocol-compiler-generated code, which may reside in other components. #ifndef GOOGLE_PROTOBUF_EXTENSION_SET_H__ #define GOOGLE_PROTOBUF_EXTENSION_SET_H__ #include #include #include #include #include #include #include #include #include #include #include #include #include // clang-format off #include // Must be last // clang-format on #ifdef SWIG #error "You cannot SWIG proto headers" #endif namespace google { namespace protobuf { class Arena; class Descriptor; // descriptor.h class FieldDescriptor; // descriptor.h class DescriptorPool; // descriptor.h class MessageLite; // message_lite.h class Message; // message.h class MessageFactory; // message.h class Reflection; // message.h class UnknownFieldSet; // unknown_field_set.h namespace internal { class FieldSkipper; // wire_format_lite.h enum class LazyVerifyOption; } // namespace internal } // namespace protobuf } // namespace google namespace google { namespace protobuf { namespace internal { class InternalMetadata; // Used to store values of type WireFormatLite::FieldType without having to // #include wire_format_lite.h. Also, ensures that we use only one byte to // store these values, which is important to keep the layout of // ExtensionSet::Extension small. typedef uint8_t FieldType; // A function which, given an integer value, returns true if the number // matches one of the defined values for the corresponding enum type. This // is used with RegisterEnumExtension, below. typedef bool EnumValidityFunc(int number); // Version of the above which takes an argument. This is needed to deal with // extensions that are not compiled in. typedef bool EnumValidityFuncWithArg(const void* arg, int number); // Information about a registered extension. struct ExtensionInfo { constexpr ExtensionInfo() : enum_validity_check() {} constexpr ExtensionInfo(const MessageLite* extendee, int param_number, FieldType type_param, bool isrepeated, bool ispacked, LazyEagerVerifyFnType verify_func) : message(extendee), number(param_number), type(type_param), is_repeated(isrepeated), is_packed(ispacked), enum_validity_check(), lazy_eager_verify_func(verify_func) {} const MessageLite* message = nullptr; int number = 0; FieldType type = 0; bool is_repeated = false; bool is_packed = false; struct EnumValidityCheck { EnumValidityFuncWithArg* func; const void* arg; }; struct MessageInfo { const MessageLite* prototype; }; union { EnumValidityCheck enum_validity_check; MessageInfo message_info; }; // The descriptor for this extension, if one exists and is known. May be // nullptr. Must not be nullptr if the descriptor for the extension does not // live in the same pool as the descriptor for the containing type. const FieldDescriptor* descriptor = nullptr; // If this field is potentially lazy this function can be used as a cheap // verification of the raw bytes. // If nullptr then no verification is performed. LazyEagerVerifyFnType lazy_eager_verify_func = nullptr; }; // An ExtensionFinder is an object which looks up extension definitions. It // must implement this method: // // bool Find(int number, ExtensionInfo* output); // GeneratedExtensionFinder is an ExtensionFinder which finds extensions // defined in .proto files which have been compiled into the binary. class PROTOBUF_EXPORT GeneratedExtensionFinder { public: explicit GeneratedExtensionFinder(const MessageLite* extendee) : extendee_(extendee) {} // Returns true and fills in *output if found, otherwise returns false. bool Find(int number, ExtensionInfo* output); private: const MessageLite* extendee_; }; // Note: extension_set_heavy.cc defines DescriptorPoolExtensionFinder for // finding extensions from a DescriptorPool. // This is an internal helper class intended for use within the protocol buffer // library and generated classes. Clients should not use it directly. Instead, // use the generated accessors such as GetExtension() of the class being // extended. // // This class manages extensions for a protocol message object. The // message's HasExtension(), GetExtension(), MutableExtension(), and // ClearExtension() methods are just thin wrappers around the embedded // ExtensionSet. When parsing, if a tag number is encountered which is // inside one of the message type's extension ranges, the tag is passed // off to the ExtensionSet for parsing. Etc. class PROTOBUF_EXPORT ExtensionSet { public: constexpr ExtensionSet(); explicit ExtensionSet(Arena* arena); ExtensionSet(ArenaInitialized, Arena* arena) : ExtensionSet(arena) {} ~ExtensionSet(); // These are called at startup by protocol-compiler-generated code to // register known extensions. The registrations are used by ParseField() // to look up extensions for parsed field numbers. Note that dynamic parsing // does not use ParseField(); only protocol-compiler-generated parsing // methods do. static void RegisterExtension(const MessageLite* extendee, int number, FieldType type, bool is_repeated, bool is_packed, LazyEagerVerifyFnType verify_func); static void RegisterEnumExtension(const MessageLite* extendee, int number, FieldType type, bool is_repeated, bool is_packed, EnumValidityFunc* is_valid); static void RegisterMessageExtension(const MessageLite* extendee, int number, FieldType type, bool is_repeated, bool is_packed, const MessageLite* prototype, LazyEagerVerifyFnType verify_func); // ================================================================= // Add all fields which are currently present to the given vector. This // is useful to implement Reflection::ListFields(). void AppendToList(const Descriptor* extendee, const DescriptorPool* pool, std::vector* output) const; // ================================================================= // Accessors // // Generated message classes include type-safe templated wrappers around // these methods. Generally you should use those rather than call these // directly, unless you are doing low-level memory management. // // When calling any of these accessors, the extension number requested // MUST exist in the DescriptorPool provided to the constructor. Otherwise, // the method will fail an assert. Normally, though, you would not call // these directly; you would either call the generated accessors of your // message class (e.g. GetExtension()) or you would call the accessors // of the reflection interface. In both cases, it is impossible to // trigger this assert failure: the generated accessors only accept // linked-in extension types as parameters, while the Reflection interface // requires you to provide the FieldDescriptor describing the extension. // // When calling any of these accessors, a protocol-compiler-generated // implementation of the extension corresponding to the number MUST // be linked in, and the FieldDescriptor used to refer to it MUST be // the one generated by that linked-in code. Otherwise, the method will // die on an assert failure. The message objects returned by the message // accessors are guaranteed to be of the correct linked-in type. // // These methods pretty much match Reflection except that: // - They're not virtual. // - They identify fields by number rather than FieldDescriptors. // - They identify enum values using integers rather than descriptors. // - Strings provide Mutable() in addition to Set() accessors. bool Has(int number) const; int ExtensionSize(int number) const; // Size of a repeated extension. int NumExtensions() const; // The number of extensions FieldType ExtensionType(int number) const; void ClearExtension(int number); // singular fields ------------------------------------------------- int32_t GetInt32(int number, int32_t default_value) const; int64_t GetInt64(int number, int64_t default_value) const; uint32_t GetUInt32(int number, uint32_t default_value) const; uint64_t GetUInt64(int number, uint64_t default_value) const; float GetFloat(int number, float default_value) const; double GetDouble(int number, double default_value) const; bool GetBool(int number, bool default_value) const; int GetEnum(int number, int default_value) const; const std::string& GetString(int number, const std::string& default_value) const; const MessageLite& GetMessage(int number, const MessageLite& default_value) const; const MessageLite& GetMessage(int number, const Descriptor* message_type, MessageFactory* factory) const; // |descriptor| may be nullptr so long as it is known that the descriptor for // the extension lives in the same pool as the descriptor for the containing // type. #define desc const FieldDescriptor* descriptor // avoid line wrapping void SetInt32(int number, FieldType type, int32_t value, desc); void SetInt64(int number, FieldType type, int64_t value, desc); void SetUInt32(int number, FieldType type, uint32_t value, desc); void SetUInt64(int number, FieldType type, uint64_t value, desc); void SetFloat(int number, FieldType type, float value, desc); void SetDouble(int number, FieldType type, double value, desc); void SetBool(int number, FieldType type, bool value, desc); void SetEnum(int number, FieldType type, int value, desc); void SetString(int number, FieldType type, std::string value, desc); std::string* MutableString(int number, FieldType type, desc); MessageLite* MutableMessage(int number, FieldType type, const MessageLite& prototype, desc); MessageLite* MutableMessage(const FieldDescriptor* descriptor, MessageFactory* factory); // Adds the given message to the ExtensionSet, taking ownership of the // message object. Existing message with the same number will be deleted. // If "message" is nullptr, this is equivalent to "ClearExtension(number)". void SetAllocatedMessage(int number, FieldType type, const FieldDescriptor* descriptor, MessageLite* message); void UnsafeArenaSetAllocatedMessage(int number, FieldType type, const FieldDescriptor* descriptor, MessageLite* message); PROTOBUF_NODISCARD MessageLite* ReleaseMessage(int number, const MessageLite& prototype); MessageLite* UnsafeArenaReleaseMessage(int number, const MessageLite& prototype); PROTOBUF_NODISCARD MessageLite* ReleaseMessage( const FieldDescriptor* descriptor, MessageFactory* factory); MessageLite* UnsafeArenaReleaseMessage(const FieldDescriptor* descriptor, MessageFactory* factory); #undef desc Arena* GetArena() const { return arena_; } // repeated fields ------------------------------------------------- // Fetches a RepeatedField extension by number; returns |default_value| // if no such extension exists. User should not touch this directly; it is // used by the GetRepeatedExtension() method. const void* GetRawRepeatedField(int number, const void* default_value) const; // Fetches a mutable version of a RepeatedField extension by number, // instantiating one if none exists. Similar to above, user should not use // this directly; it underlies MutableRepeatedExtension(). void* MutableRawRepeatedField(int number, FieldType field_type, bool packed, const FieldDescriptor* desc); // This is an overload of MutableRawRepeatedField to maintain compatibility // with old code using a previous API. This version of // MutableRawRepeatedField() will GOOGLE_CHECK-fail on a missing extension. // (E.g.: borg/clients/internal/proto1/proto2_reflection.cc.) void* MutableRawRepeatedField(int number); int32_t GetRepeatedInt32(int number, int index) const; int64_t GetRepeatedInt64(int number, int index) const; uint32_t GetRepeatedUInt32(int number, int index) const; uint64_t GetRepeatedUInt64(int number, int index) const; float GetRepeatedFloat(int number, int index) const; double GetRepeatedDouble(int number, int index) const; bool GetRepeatedBool(int number, int index) const; int GetRepeatedEnum(int number, int index) const; const std::string& GetRepeatedString(int number, int index) const; const MessageLite& GetRepeatedMessage(int number, int index) const; void SetRepeatedInt32(int number, int index, int32_t value); void SetRepeatedInt64(int number, int index, int64_t value); void SetRepeatedUInt32(int number, int index, uint32_t value); void SetRepeatedUInt64(int number, int index, uint64_t value); void SetRepeatedFloat(int number, int index, float value); void SetRepeatedDouble(int number, int index, double value); void SetRepeatedBool(int number, int index, bool value); void SetRepeatedEnum(int number, int index, int value); void SetRepeatedString(int number, int index, std::string value); std::string* MutableRepeatedString(int number, int index); MessageLite* MutableRepeatedMessage(int number, int index); #define desc const FieldDescriptor* descriptor // avoid line wrapping void AddInt32(int number, FieldType type, bool packed, int32_t value, desc); void AddInt64(int number, FieldType type, bool packed, int64_t value, desc); void AddUInt32(int number, FieldType type, bool packed, uint32_t value, desc); void AddUInt64(int number, FieldType type, bool packed, uint64_t value, desc); void AddFloat(int number, FieldType type, bool packed, float value, desc); void AddDouble(int number, FieldType type, bool packed, double value, desc); void AddBool(int number, FieldType type, bool packed, bool value, desc); void AddEnum(int number, FieldType type, bool packed, int value, desc); void AddString(int number, FieldType type, std::string value, desc); std::string* AddString(int number, FieldType type, desc); MessageLite* AddMessage(int number, FieldType type, const MessageLite& prototype, desc); MessageLite* AddMessage(const FieldDescriptor* descriptor, MessageFactory* factory); void AddAllocatedMessage(const FieldDescriptor* descriptor, MessageLite* new_entry); void UnsafeArenaAddAllocatedMessage(const FieldDescriptor* descriptor, MessageLite* new_entry); #undef desc void RemoveLast(int number); PROTOBUF_NODISCARD MessageLite* ReleaseLast(int number); MessageLite* UnsafeArenaReleaseLast(int number); void SwapElements(int number, int index1, int index2); // ================================================================= // convenience methods for implementing methods of Message // // These could all be implemented in terms of the other methods of this // class, but providing them here helps keep the generated code size down. void Clear(); void MergeFrom(const MessageLite* extendee, const ExtensionSet& other); void Swap(const MessageLite* extendee, ExtensionSet* other); void InternalSwap(ExtensionSet* other); void SwapExtension(const MessageLite* extendee, ExtensionSet* other, int number); void UnsafeShallowSwapExtension(ExtensionSet* other, int number); bool IsInitialized() const; // Lite parser const char* ParseField(uint64_t tag, const char* ptr, const MessageLite* extendee, internal::InternalMetadata* metadata, internal::ParseContext* ctx); // Full parser const char* ParseField(uint64_t tag, const char* ptr, const Message* extendee, internal::InternalMetadata* metadata, internal::ParseContext* ctx); template const char* ParseMessageSet(const char* ptr, const Msg* extendee, InternalMetadata* metadata, internal::ParseContext* ctx) { struct MessageSetItem { const char* _InternalParse(const char* ptr, ParseContext* ctx) { return me->ParseMessageSetItem(ptr, extendee, metadata, ctx); } ExtensionSet* me; const Msg* extendee; InternalMetadata* metadata; } item{this, extendee, metadata}; while (!ctx->Done(&ptr)) { uint32_t tag; ptr = ReadTag(ptr, &tag); GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); if (tag == WireFormatLite::kMessageSetItemStartTag) { ptr = ctx->ParseGroup(&item, ptr, tag); GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); } else { if (tag == 0 || (tag & 7) == 4) { ctx->SetLastTag(tag); return ptr; } ptr = ParseField(tag, ptr, extendee, metadata, ctx); GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); } } return ptr; } // Write all extension fields with field numbers in the range // [start_field_number, end_field_number) // to the output stream, using the cached sizes computed when ByteSize() was // last called. Note that the range bounds are inclusive-exclusive. void SerializeWithCachedSizes(const MessageLite* extendee, int start_field_number, int end_field_number, io::CodedOutputStream* output) const { output->SetCur(_InternalSerialize(extendee, start_field_number, end_field_number, output->Cur(), output->EpsCopy())); } // Same as SerializeWithCachedSizes, but without any bounds checking. // The caller must ensure that target has sufficient capacity for the // serialized extensions. // // Returns a pointer past the last written byte. uint8_t* _InternalSerialize(const MessageLite* extendee, int start_field_number, int end_field_number, uint8_t* target, io::EpsCopyOutputStream* stream) const { if (flat_size_ == 0) { assert(!is_large()); return target; } return _InternalSerializeImpl(extendee, start_field_number, end_field_number, target, stream); } // Like above but serializes in MessageSet format. void SerializeMessageSetWithCachedSizes(const MessageLite* extendee, io::CodedOutputStream* output) const { output->SetCur(InternalSerializeMessageSetWithCachedSizesToArray( extendee, output->Cur(), output->EpsCopy())); } uint8_t* InternalSerializeMessageSetWithCachedSizesToArray( const MessageLite* extendee, uint8_t* target, io::EpsCopyOutputStream* stream) const; // For backward-compatibility, versions of two of the above methods that // serialize deterministically iff SetDefaultSerializationDeterministic() // has been called. uint8_t* SerializeWithCachedSizesToArray(int start_field_number, int end_field_number, uint8_t* target) const; uint8_t* SerializeMessageSetWithCachedSizesToArray( const MessageLite* extendee, uint8_t* target) const; // Returns the total serialized size of all the extensions. size_t ByteSize() const; // Like ByteSize() but uses MessageSet format. size_t MessageSetByteSize() const; // Returns (an estimate of) the total number of bytes used for storing the // extensions in memory, excluding sizeof(*this). If the ExtensionSet is // for a lite message (and thus possibly contains lite messages), the results // are undefined (might work, might crash, might corrupt data, might not even // be linked in). It's up to the protocol compiler to avoid calling this on // such ExtensionSets (easy enough since lite messages don't implement // SpaceUsed()). size_t SpaceUsedExcludingSelfLong() const; // This method just calls SpaceUsedExcludingSelfLong() but it can not be // inlined because the definition of SpaceUsedExcludingSelfLong() is not // included in lite runtime and when an inline method refers to it MSVC // will complain about unresolved symbols when building the lite runtime // as .dll. int SpaceUsedExcludingSelf() const; private: template friend class PrimitiveTypeTraits; template friend class RepeatedPrimitiveTypeTraits; template friend class EnumTypeTraits; template friend class RepeatedEnumTypeTraits; friend class google::protobuf::Reflection; const int32_t& GetRefInt32(int number, const int32_t& default_value) const; const int64_t& GetRefInt64(int number, const int64_t& default_value) const; const uint32_t& GetRefUInt32(int number, const uint32_t& default_value) const; const uint64_t& GetRefUInt64(int number, const uint64_t& default_value) const; const float& GetRefFloat(int number, const float& default_value) const; const double& GetRefDouble(int number, const double& default_value) const; const bool& GetRefBool(int number, const bool& default_value) const; const int& GetRefEnum(int number, const int& default_value) const; const int32_t& GetRefRepeatedInt32(int number, int index) const; const int64_t& GetRefRepeatedInt64(int number, int index) const; const uint32_t& GetRefRepeatedUInt32(int number, int index) const; const uint64_t& GetRefRepeatedUInt64(int number, int index) const; const float& GetRefRepeatedFloat(int number, int index) const; const double& GetRefRepeatedDouble(int number, int index) const; const bool& GetRefRepeatedBool(int number, int index) const; const int& GetRefRepeatedEnum(int number, int index) const; // Implementation of _InternalSerialize for non-empty map_. uint8_t* _InternalSerializeImpl(const MessageLite* extendee, int start_field_number, int end_field_number, uint8_t* target, io::EpsCopyOutputStream* stream) const; // Interface of a lazily parsed singular message extension. class PROTOBUF_EXPORT LazyMessageExtension { public: LazyMessageExtension() {} virtual ~LazyMessageExtension() {} virtual LazyMessageExtension* New(Arena* arena) const = 0; virtual const MessageLite& GetMessage(const MessageLite& prototype, Arena* arena) const = 0; virtual MessageLite* MutableMessage(const MessageLite& prototype, Arena* arena) = 0; virtual void SetAllocatedMessage(MessageLite* message, Arena* arena) = 0; virtual void UnsafeArenaSetAllocatedMessage(MessageLite* message, Arena* arena) = 0; PROTOBUF_NODISCARD virtual MessageLite* ReleaseMessage( const MessageLite& prototype, Arena* arena) = 0; virtual MessageLite* UnsafeArenaReleaseMessage(const MessageLite& prototype, Arena* arena) = 0; virtual bool IsInitialized() const = 0; PROTOBUF_DEPRECATED_MSG("Please use ByteSizeLong() instead") virtual int ByteSize() const { return internal::ToIntSize(ByteSizeLong()); } virtual size_t ByteSizeLong() const = 0; virtual size_t SpaceUsedLong() const = 0; virtual void MergeFrom(const MessageLite* prototype, const LazyMessageExtension& other, Arena* arena) = 0; virtual void MergeFromMessage(const MessageLite& msg, Arena* arena) = 0; virtual void Clear() = 0; virtual const char* _InternalParse(const Message& prototype, Arena* arena, LazyVerifyOption option, const char* ptr, ParseContext* ctx) = 0; virtual uint8_t* WriteMessageToArray( const MessageLite* prototype, int number, uint8_t* target, io::EpsCopyOutputStream* stream) const = 0; private: virtual void UnusedKeyMethod(); // Dummy key method to avoid weak vtable. GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(LazyMessageExtension); }; // Give access to function defined below to see LazyMessageExtension. friend LazyMessageExtension* MaybeCreateLazyExtension(Arena* arena); struct Extension { // The order of these fields packs Extension into 24 bytes when using 8 // byte alignment. Consider this when adding or removing fields here. union { int32_t int32_t_value; int64_t int64_t_value; uint32_t uint32_t_value; uint64_t uint64_t_value; float float_value; double double_value; bool bool_value; int enum_value; std::string* string_value; MessageLite* message_value; LazyMessageExtension* lazymessage_value; RepeatedField* repeated_int32_t_value; RepeatedField* repeated_int64_t_value; RepeatedField* repeated_uint32_t_value; RepeatedField* repeated_uint64_t_value; RepeatedField* repeated_float_value; RepeatedField* repeated_double_value; RepeatedField* repeated_bool_value; RepeatedField* repeated_enum_value; RepeatedPtrField* repeated_string_value; RepeatedPtrField* repeated_message_value; }; FieldType type; bool is_repeated; // For singular types, indicates if the extension is "cleared". This // happens when an extension is set and then later cleared by the caller. // We want to keep the Extension object around for reuse, so instead of // removing it from the map, we just set is_cleared = true. This has no // meaning for repeated types; for those, the size of the RepeatedField // simply becomes zero when cleared. bool is_cleared : 4; // For singular message types, indicates whether lazy parsing is enabled // for this extension. This field is only valid when type == TYPE_MESSAGE // and !is_repeated because we only support lazy parsing for singular // message types currently. If is_lazy = true, the extension is stored in // lazymessage_value. Otherwise, the extension will be message_value. bool is_lazy : 4; // For repeated types, this indicates if the [packed=true] option is set. bool is_packed; // For packed fields, the size of the packed data is recorded here when // ByteSize() is called then used during serialization. // TODO(kenton): Use atomic when C++ supports it. mutable int cached_size; // The descriptor for this extension, if one exists and is known. May be // nullptr. Must not be nullptr if the descriptor for the extension does // not live in the same pool as the descriptor for the containing type. const FieldDescriptor* descriptor; // Some helper methods for operations on a single Extension. uint8_t* InternalSerializeFieldWithCachedSizesToArray( const MessageLite* extendee, const ExtensionSet* extension_set, int number, uint8_t* target, io::EpsCopyOutputStream* stream) const; uint8_t* InternalSerializeMessageSetItemWithCachedSizesToArray( const MessageLite* extendee, const ExtensionSet* extension_set, int number, uint8_t* target, io::EpsCopyOutputStream* stream) const; size_t ByteSize(int number) const; size_t MessageSetItemByteSize(int number) const; void Clear(); int GetSize() const; void Free(); size_t SpaceUsedExcludingSelfLong() const; bool IsInitialized() const; }; // The Extension struct is small enough to be passed by value, so we use it // directly as the value type in mappings rather than use pointers. We use // sorted maps rather than hash-maps because we expect most ExtensionSets will // only contain a small number of extension. Also, we want AppendToList and // deterministic serialization to order fields by field number. struct KeyValue { int first; Extension second; struct FirstComparator { bool operator()(const KeyValue& lhs, const KeyValue& rhs) const { return lhs.first < rhs.first; } bool operator()(const KeyValue& lhs, int key) const { return lhs.first < key; } bool operator()(int key, const KeyValue& rhs) const { return key < rhs.first; } }; }; typedef std::map LargeMap; // Wrapper API that switches between flat-map and LargeMap. // Finds a key (if present) in the ExtensionSet. const Extension* FindOrNull(int key) const; Extension* FindOrNull(int key); // Helper-functions that only inspect the LargeMap. const Extension* FindOrNullInLargeMap(int key) const; Extension* FindOrNullInLargeMap(int key); // Inserts a new (key, Extension) into the ExtensionSet (and returns true), or // finds the already-existing Extension for that key (returns false). // The Extension* will point to the new-or-found Extension. std::pair Insert(int key); // Grows the flat_capacity_. // If flat_capacity_ > kMaximumFlatCapacity, converts to LargeMap. void GrowCapacity(size_t minimum_new_capacity); static constexpr uint16_t kMaximumFlatCapacity = 256; bool is_large() const { return static_cast(flat_size_) < 0; } // Removes a key from the ExtensionSet. void Erase(int key); size_t Size() const { return PROTOBUF_PREDICT_FALSE(is_large()) ? map_.large->size() : flat_size_; } // Similar to std::for_each. // Each Iterator is decomposed into ->first and ->second fields, so // that the KeyValueFunctor can be agnostic vis-a-vis KeyValue-vs-std::pair. template static KeyValueFunctor ForEach(Iterator begin, Iterator end, KeyValueFunctor func) { for (Iterator it = begin; it != end; ++it) func(it->first, it->second); return std::move(func); } // Applies a functor to the pairs in sorted order. template KeyValueFunctor ForEach(KeyValueFunctor func) { if (PROTOBUF_PREDICT_FALSE(is_large())) { return ForEach(map_.large->begin(), map_.large->end(), std::move(func)); } return ForEach(flat_begin(), flat_end(), std::move(func)); } // Applies a functor to the pairs in sorted order. template KeyValueFunctor ForEach(KeyValueFunctor func) const { if (PROTOBUF_PREDICT_FALSE(is_large())) { return ForEach(map_.large->begin(), map_.large->end(), std::move(func)); } return ForEach(flat_begin(), flat_end(), std::move(func)); } // Merges existing Extension from other_extension void InternalExtensionMergeFrom(const MessageLite* extendee, int number, const Extension& other_extension, Arena* other_arena); inline static bool is_packable(WireFormatLite::WireType type) { switch (type) { case WireFormatLite::WIRETYPE_VARINT: case WireFormatLite::WIRETYPE_FIXED64: case WireFormatLite::WIRETYPE_FIXED32: return true; case WireFormatLite::WIRETYPE_LENGTH_DELIMITED: case WireFormatLite::WIRETYPE_START_GROUP: case WireFormatLite::WIRETYPE_END_GROUP: return false; // Do not add a default statement. Let the compiler complain when // someone // adds a new wire type. } PROTOBUF_ASSUME(false); // switch handles all possible enum values return false; } // Returns true and fills field_number and extension if extension is found. // Note to support packed repeated field compatibility, it also fills whether // the tag on wire is packed, which can be different from // extension->is_packed (whether packed=true is specified). template bool FindExtensionInfoFromTag(uint32_t tag, ExtensionFinder* extension_finder, int* field_number, ExtensionInfo* extension, bool* was_packed_on_wire) { *field_number = WireFormatLite::GetTagFieldNumber(tag); WireFormatLite::WireType wire_type = WireFormatLite::GetTagWireType(tag); return FindExtensionInfoFromFieldNumber(wire_type, *field_number, extension_finder, extension, was_packed_on_wire); } // Returns true and fills extension if extension is found. // Note to support packed repeated field compatibility, it also fills whether // the tag on wire is packed, which can be different from // extension->is_packed (whether packed=true is specified). template bool FindExtensionInfoFromFieldNumber(int wire_type, int field_number, ExtensionFinder* extension_finder, ExtensionInfo* extension, bool* was_packed_on_wire) const { if (!extension_finder->Find(field_number, extension)) { return false; } GOOGLE_DCHECK(extension->type > 0 && extension->type <= WireFormatLite::MAX_FIELD_TYPE); auto real_type = static_cast(extension->type); WireFormatLite::WireType expected_wire_type = WireFormatLite::WireTypeForFieldType(real_type); // Check if this is a packed field. *was_packed_on_wire = false; if (extension->is_repeated && wire_type == WireFormatLite::WIRETYPE_LENGTH_DELIMITED && is_packable(expected_wire_type)) { *was_packed_on_wire = true; return true; } // Otherwise the wire type must match. return expected_wire_type == wire_type; } // Find the prototype for a LazyMessage from the extension registry. Returns // null if the extension is not found. const MessageLite* GetPrototypeForLazyMessage(const MessageLite* extendee, int number) const; // Returns true if extension is present and lazy. bool HasLazy(int number) const; // Gets the extension with the given number, creating it if it does not // already exist. Returns true if the extension did not already exist. bool MaybeNewExtension(int number, const FieldDescriptor* descriptor, Extension** result); // Gets the repeated extension for the given descriptor, creating it if // it does not exist. Extension* MaybeNewRepeatedExtension(const FieldDescriptor* descriptor); bool FindExtension(int wire_type, uint32_t field, const MessageLite* extendee, const internal::ParseContext* /*ctx*/, ExtensionInfo* extension, bool* was_packed_on_wire) { GeneratedExtensionFinder finder(extendee); return FindExtensionInfoFromFieldNumber(wire_type, field, &finder, extension, was_packed_on_wire); } inline bool FindExtension(int wire_type, uint32_t field, const Message* extendee, const internal::ParseContext* ctx, ExtensionInfo* extension, bool* was_packed_on_wire); // Used for MessageSet only const char* ParseFieldMaybeLazily(uint64_t tag, const char* ptr, const MessageLite* extendee, internal::InternalMetadata* metadata, internal::ParseContext* ctx) { // Lite MessageSet doesn't implement lazy. return ParseField(tag, ptr, extendee, metadata, ctx); } const char* ParseFieldMaybeLazily(uint64_t tag, const char* ptr, const Message* extendee, internal::InternalMetadata* metadata, internal::ParseContext* ctx); const char* ParseMessageSetItem(const char* ptr, const MessageLite* extendee, internal::InternalMetadata* metadata, internal::ParseContext* ctx); const char* ParseMessageSetItem(const char* ptr, const Message* extendee, internal::InternalMetadata* metadata, internal::ParseContext* ctx); // Implemented in extension_set_inl.h to keep code out of the header file. template const char* ParseFieldWithExtensionInfo(int number, bool was_packed_on_wire, const ExtensionInfo& info, internal::InternalMetadata* metadata, const char* ptr, internal::ParseContext* ctx); template const char* ParseMessageSetItemTmpl(const char* ptr, const Msg* extendee, internal::InternalMetadata* metadata, internal::ParseContext* ctx); // Hack: RepeatedPtrFieldBase declares ExtensionSet as a friend. This // friendship should automatically extend to ExtensionSet::Extension, but // unfortunately some older compilers (e.g. GCC 3.4.4) do not implement this // correctly. So, we must provide helpers for calling methods of that // class. // Defined in extension_set_heavy.cc. static inline size_t RepeatedMessage_SpaceUsedExcludingSelfLong( RepeatedPtrFieldBase* field); KeyValue* flat_begin() { assert(!is_large()); return map_.flat; } const KeyValue* flat_begin() const { assert(!is_large()); return map_.flat; } KeyValue* flat_end() { assert(!is_large()); return map_.flat + flat_size_; } const KeyValue* flat_end() const { assert(!is_large()); return map_.flat + flat_size_; } Arena* arena_; // Manual memory-management: // map_.flat is an allocated array of flat_capacity_ elements. // [map_.flat, map_.flat + flat_size_) is the currently-in-use prefix. uint16_t flat_capacity_; uint16_t flat_size_; // negative int16_t(flat_size_) indicates is_large() union AllocatedData { KeyValue* flat; // If flat_capacity_ > kMaximumFlatCapacity, switch to LargeMap, // which guarantees O(n lg n) CPU but larger constant factors. LargeMap* large; } map_; static void DeleteFlatMap(const KeyValue* flat, uint16_t flat_capacity); GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ExtensionSet); }; constexpr ExtensionSet::ExtensionSet() : arena_(nullptr), flat_capacity_(0), flat_size_(0), map_{nullptr} {} // These are just for convenience... inline void ExtensionSet::SetString(int number, FieldType type, std::string value, const FieldDescriptor* descriptor) { MutableString(number, type, descriptor)->assign(std::move(value)); } inline void ExtensionSet::SetRepeatedString(int number, int index, std::string value) { MutableRepeatedString(number, index)->assign(std::move(value)); } inline void ExtensionSet::AddString(int number, FieldType type, std::string value, const FieldDescriptor* descriptor) { AddString(number, type, descriptor)->assign(std::move(value)); } // =================================================================== // Glue for generated extension accessors // ------------------------------------------------------------------- // Template magic // First we have a set of classes representing "type traits" for different // field types. A type traits class knows how to implement basic accessors // for extensions of a particular type given an ExtensionSet. The signature // for a type traits class looks like this: // // class TypeTraits { // public: // typedef ? ConstType; // typedef ? MutableType; // // TypeTraits for singular fields and repeated fields will define the // // symbol "Singular" or "Repeated" respectively. These two symbols will // // be used in extension accessors to distinguish between singular // // extensions and repeated extensions. If the TypeTraits for the passed // // in extension doesn't have the expected symbol defined, it means the // // user is passing a repeated extension to a singular accessor, or the // // opposite. In that case the C++ compiler will generate an error // // message "no matching member function" to inform the user. // typedef ? Singular // typedef ? Repeated // // static inline ConstType Get(int number, const ExtensionSet& set); // static inline void Set(int number, ConstType value, ExtensionSet* set); // static inline MutableType Mutable(int number, ExtensionSet* set); // // // Variants for repeated fields. // static inline ConstType Get(int number, const ExtensionSet& set, // int index); // static inline void Set(int number, int index, // ConstType value, ExtensionSet* set); // static inline MutableType Mutable(int number, int index, // ExtensionSet* set); // static inline void Add(int number, ConstType value, ExtensionSet* set); // static inline MutableType Add(int number, ExtensionSet* set); // This is used by the ExtensionIdentifier constructor to register // the extension at dynamic initialization. // template // static void Register(int number, FieldType type, bool is_packed); // }; // // Not all of these methods make sense for all field types. For example, the // "Mutable" methods only make sense for strings and messages, and the // repeated methods only make sense for repeated types. So, each type // traits class implements only the set of methods from this signature that it // actually supports. This will cause a compiler error if the user tries to // access an extension using a method that doesn't make sense for its type. // For example, if "foo" is an extension of type "optional int32", then if you // try to write code like: // my_message.MutableExtension(foo) // you will get a compile error because PrimitiveTypeTraits does not // have a "Mutable()" method. // ------------------------------------------------------------------- // PrimitiveTypeTraits // Since the ExtensionSet has different methods for each primitive type, // we must explicitly define the methods of the type traits class for each // known type. template class PrimitiveTypeTraits { public: typedef Type ConstType; typedef Type MutableType; typedef PrimitiveTypeTraits Singular; static inline ConstType Get(int number, const ExtensionSet& set, ConstType default_value); static inline const ConstType* GetPtr(int number, const ExtensionSet& set, const ConstType& default_value); static inline void Set(int number, FieldType field_type, ConstType value, ExtensionSet* set); template static void Register(int number, FieldType type, bool is_packed, LazyEagerVerifyFnType verify_func) { ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number, type, false, is_packed, verify_func); } }; template class RepeatedPrimitiveTypeTraits { public: typedef Type ConstType; typedef Type MutableType; typedef RepeatedPrimitiveTypeTraits Repeated; typedef RepeatedField RepeatedFieldType; static inline Type Get(int number, const ExtensionSet& set, int index); static inline const Type* GetPtr(int number, const ExtensionSet& set, int index); static inline const RepeatedField* GetRepeatedPtr( int number, const ExtensionSet& set); static inline void Set(int number, int index, Type value, ExtensionSet* set); static inline void Add(int number, FieldType field_type, bool is_packed, Type value, ExtensionSet* set); static inline const RepeatedField& GetRepeated( int number, const ExtensionSet& set); static inline RepeatedField* MutableRepeated(int number, FieldType field_type, bool is_packed, ExtensionSet* set); static const RepeatedFieldType* GetDefaultRepeatedField(); template static void Register(int number, FieldType type, bool is_packed, LazyEagerVerifyFnType verify_func) { ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number, type, true, is_packed, verify_func); } }; class PROTOBUF_EXPORT RepeatedPrimitiveDefaults { private: template friend class RepeatedPrimitiveTypeTraits; static const RepeatedPrimitiveDefaults* default_instance(); RepeatedField default_repeated_field_int32_t_; RepeatedField default_repeated_field_int64_t_; RepeatedField default_repeated_field_uint32_t_; RepeatedField default_repeated_field_uint64_t_; RepeatedField default_repeated_field_double_; RepeatedField default_repeated_field_float_; RepeatedField default_repeated_field_bool_; }; #define PROTOBUF_DEFINE_PRIMITIVE_TYPE(TYPE, METHOD) \ template <> \ inline TYPE PrimitiveTypeTraits::Get( \ int number, const ExtensionSet& set, TYPE default_value) { \ return set.Get##METHOD(number, default_value); \ } \ template <> \ inline const TYPE* PrimitiveTypeTraits::GetPtr( \ int number, const ExtensionSet& set, const TYPE& default_value) { \ return &set.GetRef##METHOD(number, default_value); \ } \ template <> \ inline void PrimitiveTypeTraits::Set(int number, FieldType field_type, \ TYPE value, ExtensionSet* set) { \ set->Set##METHOD(number, field_type, value, nullptr); \ } \ \ template <> \ inline TYPE RepeatedPrimitiveTypeTraits::Get( \ int number, const ExtensionSet& set, int index) { \ return set.GetRepeated##METHOD(number, index); \ } \ template <> \ inline const TYPE* RepeatedPrimitiveTypeTraits::GetPtr( \ int number, const ExtensionSet& set, int index) { \ return &set.GetRefRepeated##METHOD(number, index); \ } \ template <> \ inline void RepeatedPrimitiveTypeTraits::Set( \ int number, int index, TYPE value, ExtensionSet* set) { \ set->SetRepeated##METHOD(number, index, value); \ } \ template <> \ inline void RepeatedPrimitiveTypeTraits::Add( \ int number, FieldType field_type, bool is_packed, TYPE value, \ ExtensionSet* set) { \ set->Add##METHOD(number, field_type, is_packed, value, nullptr); \ } \ template <> \ inline const RepeatedField* \ RepeatedPrimitiveTypeTraits::GetDefaultRepeatedField() { \ return &RepeatedPrimitiveDefaults::default_instance() \ ->default_repeated_field_##TYPE##_; \ } \ template <> \ inline const RepeatedField& \ RepeatedPrimitiveTypeTraits::GetRepeated(int number, \ const ExtensionSet& set) { \ return *reinterpret_cast*>( \ set.GetRawRepeatedField(number, GetDefaultRepeatedField())); \ } \ template <> \ inline const RepeatedField* \ RepeatedPrimitiveTypeTraits::GetRepeatedPtr(int number, \ const ExtensionSet& set) { \ return &GetRepeated(number, set); \ } \ template <> \ inline RepeatedField* \ RepeatedPrimitiveTypeTraits::MutableRepeated( \ int number, FieldType field_type, bool is_packed, ExtensionSet* set) { \ return reinterpret_cast*>( \ set->MutableRawRepeatedField(number, field_type, is_packed, nullptr)); \ } PROTOBUF_DEFINE_PRIMITIVE_TYPE(int32_t, Int32) PROTOBUF_DEFINE_PRIMITIVE_TYPE(int64_t, Int64) PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint32_t, UInt32) PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint64_t, UInt64) PROTOBUF_DEFINE_PRIMITIVE_TYPE(float, Float) PROTOBUF_DEFINE_PRIMITIVE_TYPE(double, Double) PROTOBUF_DEFINE_PRIMITIVE_TYPE(bool, Bool) #undef PROTOBUF_DEFINE_PRIMITIVE_TYPE // ------------------------------------------------------------------- // StringTypeTraits // Strings support both Set() and Mutable(). class PROTOBUF_EXPORT StringTypeTraits { public: typedef const std::string& ConstType; typedef std::string* MutableType; typedef StringTypeTraits Singular; static inline const std::string& Get(int number, const ExtensionSet& set, ConstType default_value) { return set.GetString(number, default_value); } static inline const std::string* GetPtr(int number, const ExtensionSet& set, ConstType default_value) { return &Get(number, set, default_value); } static inline void Set(int number, FieldType field_type, const std::string& value, ExtensionSet* set) { set->SetString(number, field_type, value, nullptr); } static inline std::string* Mutable(int number, FieldType field_type, ExtensionSet* set) { return set->MutableString(number, field_type, nullptr); } template static void Register(int number, FieldType type, bool is_packed, LazyEagerVerifyFnType verify_func) { ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number, type, false, is_packed, verify_func); } }; class PROTOBUF_EXPORT RepeatedStringTypeTraits { public: typedef const std::string& ConstType; typedef std::string* MutableType; typedef RepeatedStringTypeTraits Repeated; typedef RepeatedPtrField RepeatedFieldType; static inline const std::string& Get(int number, const ExtensionSet& set, int index) { return set.GetRepeatedString(number, index); } static inline const std::string* GetPtr(int number, const ExtensionSet& set, int index) { return &Get(number, set, index); } static inline const RepeatedPtrField* GetRepeatedPtr( int number, const ExtensionSet& set) { return &GetRepeated(number, set); } static inline void Set(int number, int index, const std::string& value, ExtensionSet* set) { set->SetRepeatedString(number, index, value); } static inline std::string* Mutable(int number, int index, ExtensionSet* set) { return set->MutableRepeatedString(number, index); } static inline void Add(int number, FieldType field_type, bool /*is_packed*/, const std::string& value, ExtensionSet* set) { set->AddString(number, field_type, value, nullptr); } static inline std::string* Add(int number, FieldType field_type, ExtensionSet* set) { return set->AddString(number, field_type, nullptr); } static inline const RepeatedPtrField& GetRepeated( int number, const ExtensionSet& set) { return *reinterpret_cast*>( set.GetRawRepeatedField(number, GetDefaultRepeatedField())); } static inline RepeatedPtrField* MutableRepeated( int number, FieldType field_type, bool is_packed, ExtensionSet* set) { return reinterpret_cast*>( set->MutableRawRepeatedField(number, field_type, is_packed, nullptr)); } static const RepeatedFieldType* GetDefaultRepeatedField(); template static void Register(int number, FieldType type, bool is_packed, LazyEagerVerifyFnType fn) { ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number, type, true, is_packed, fn); } private: static void InitializeDefaultRepeatedFields(); static void DestroyDefaultRepeatedFields(); }; // ------------------------------------------------------------------- // EnumTypeTraits // ExtensionSet represents enums using integers internally, so we have to // static_cast around. template class EnumTypeTraits { public: typedef Type ConstType; typedef Type MutableType; typedef EnumTypeTraits Singular; static inline ConstType Get(int number, const ExtensionSet& set, ConstType default_value) { return static_cast(set.GetEnum(number, default_value)); } static inline const ConstType* GetPtr(int number, const ExtensionSet& set, const ConstType& default_value) { return reinterpret_cast( &set.GetRefEnum(number, default_value)); } static inline void Set(int number, FieldType field_type, ConstType value, ExtensionSet* set) { GOOGLE_DCHECK(IsValid(value)); set->SetEnum(number, field_type, value, nullptr); } template static void Register(int number, FieldType type, bool is_packed, LazyEagerVerifyFnType fn) { ExtensionSet::RegisterEnumExtension(&ExtendeeT::default_instance(), number, type, false, is_packed, IsValid); } }; template class RepeatedEnumTypeTraits { public: typedef Type ConstType; typedef Type MutableType; typedef RepeatedEnumTypeTraits Repeated; typedef RepeatedField RepeatedFieldType; static inline ConstType Get(int number, const ExtensionSet& set, int index) { return static_cast(set.GetRepeatedEnum(number, index)); } static inline const ConstType* GetPtr(int number, const ExtensionSet& set, int index) { return reinterpret_cast( &set.GetRefRepeatedEnum(number, index)); } static inline void Set(int number, int index, ConstType value, ExtensionSet* set) { GOOGLE_DCHECK(IsValid(value)); set->SetRepeatedEnum(number, index, value); } static inline void Add(int number, FieldType field_type, bool is_packed, ConstType value, ExtensionSet* set) { GOOGLE_DCHECK(IsValid(value)); set->AddEnum(number, field_type, is_packed, value, nullptr); } static inline const RepeatedField& GetRepeated( int number, const ExtensionSet& set) { // Hack: the `Extension` struct stores a RepeatedField for enums. // RepeatedField cannot implicitly convert to RepeatedField // so we need to do some casting magic. See message.h for similar // contortions for non-extension fields. return *reinterpret_cast*>( set.GetRawRepeatedField(number, GetDefaultRepeatedField())); } static inline const RepeatedField* GetRepeatedPtr( int number, const ExtensionSet& set) { return &GetRepeated(number, set); } static inline RepeatedField* MutableRepeated(int number, FieldType field_type, bool is_packed, ExtensionSet* set) { return reinterpret_cast*>( set->MutableRawRepeatedField(number, field_type, is_packed, nullptr)); } static const RepeatedFieldType* GetDefaultRepeatedField() { // Hack: as noted above, repeated enum fields are internally stored as a // RepeatedField. We need to be able to instantiate global static // objects to return as default (empty) repeated fields on non-existent // extensions. We would not be able to know a-priori all of the enum types // (values of |Type|) to instantiate all of these, so we just re-use // int32_t's default repeated field object. return reinterpret_cast*>( RepeatedPrimitiveTypeTraits::GetDefaultRepeatedField()); } template static void Register(int number, FieldType type, bool is_packed, LazyEagerVerifyFnType fn) { ExtensionSet::RegisterEnumExtension(&ExtendeeT::default_instance(), number, type, true, is_packed, IsValid); } }; // ------------------------------------------------------------------- // MessageTypeTraits // ExtensionSet guarantees that when manipulating extensions with message // types, the implementation used will be the compiled-in class representing // that type. So, we can static_cast down to the exact type we expect. template class MessageTypeTraits { public: typedef const Type& ConstType; typedef Type* MutableType; typedef MessageTypeTraits Singular; static inline ConstType Get(int number, const ExtensionSet& set, ConstType default_value) { return static_cast(set.GetMessage(number, default_value)); } static inline std::nullptr_t GetPtr(int /* number */, const ExtensionSet& /* set */, ConstType /* default_value */) { // Cannot be implemented because of forward declared messages? return nullptr; } static inline MutableType Mutable(int number, FieldType field_type, ExtensionSet* set) { return static_cast(set->MutableMessage( number, field_type, Type::default_instance(), nullptr)); } static inline void SetAllocated(int number, FieldType field_type, MutableType message, ExtensionSet* set) { set->SetAllocatedMessage(number, field_type, nullptr, message); } static inline void UnsafeArenaSetAllocated(int number, FieldType field_type, MutableType message, ExtensionSet* set) { set->UnsafeArenaSetAllocatedMessage(number, field_type, nullptr, message); } PROTOBUF_NODISCARD static inline MutableType Release( int number, FieldType /* field_type */, ExtensionSet* set) { return static_cast( set->ReleaseMessage(number, Type::default_instance())); } static inline MutableType UnsafeArenaRelease(int number, FieldType /* field_type */, ExtensionSet* set) { return static_cast( set->UnsafeArenaReleaseMessage(number, Type::default_instance())); } template static void Register(int number, FieldType type, bool is_packed, LazyEagerVerifyFnType fn) { ExtensionSet::RegisterMessageExtension(&ExtendeeT::default_instance(), number, type, false, is_packed, &Type::default_instance(), fn); } }; // Used by WireFormatVerify to extract the verify function from the registry. LazyEagerVerifyFnType FindExtensionLazyEagerVerifyFn( const MessageLite* extendee, int number); // forward declaration. class RepeatedMessageGenericTypeTraits; template class RepeatedMessageTypeTraits { public: typedef const Type& ConstType; typedef Type* MutableType; typedef RepeatedMessageTypeTraits Repeated; typedef RepeatedPtrField RepeatedFieldType; static inline ConstType Get(int number, const ExtensionSet& set, int index) { return static_cast(set.GetRepeatedMessage(number, index)); } static inline std::nullptr_t GetPtr(int /* number */, const ExtensionSet& /* set */, int /* index */) { // Cannot be implemented because of forward declared messages? return nullptr; } static inline std::nullptr_t GetRepeatedPtr(int /* number */, const ExtensionSet& /* set */) { // Cannot be implemented because of forward declared messages? return nullptr; } static inline MutableType Mutable(int number, int index, ExtensionSet* set) { return static_cast(set->MutableRepeatedMessage(number, index)); } static inline MutableType Add(int number, FieldType field_type, ExtensionSet* set) { return static_cast( set->AddMessage(number, field_type, Type::default_instance(), nullptr)); } static inline const RepeatedPtrField& GetRepeated( int number, const ExtensionSet& set) { // See notes above in RepeatedEnumTypeTraits::GetRepeated(): same // casting hack applies here, because a RepeatedPtrField // cannot naturally become a RepeatedPtrType even though Type is // presumably a message. google::protobuf::Message goes through similar contortions // with a reinterpret_cast<>. return *reinterpret_cast*>( set.GetRawRepeatedField(number, GetDefaultRepeatedField())); } static inline RepeatedPtrField* MutableRepeated(int number, FieldType field_type, bool is_packed, ExtensionSet* set) { return reinterpret_cast*>( set->MutableRawRepeatedField(number, field_type, is_packed, nullptr)); } static const RepeatedFieldType* GetDefaultRepeatedField(); template static void Register(int number, FieldType type, bool is_packed, LazyEagerVerifyFnType fn) { ExtensionSet::RegisterMessageExtension(&ExtendeeT::default_instance(), number, type, true, is_packed, &Type::default_instance(), fn); } }; template inline const typename RepeatedMessageTypeTraits::RepeatedFieldType* RepeatedMessageTypeTraits::GetDefaultRepeatedField() { static auto instance = OnShutdownDelete(new RepeatedFieldType); return instance; } // ------------------------------------------------------------------- // ExtensionIdentifier // This is the type of actual extension objects. E.g. if you have: // extend Foo { // optional int32 bar = 1234; // } // then "bar" will be defined in C++ as: // ExtensionIdentifier, 5, false> bar(1234); // // Note that we could, in theory, supply the field number as a template // parameter, and thus make an instance of ExtensionIdentifier have no // actual contents. However, if we did that, then using an extension // identifier would not necessarily cause the compiler to output any sort // of reference to any symbol defined in the extension's .pb.o file. Some // linkers will actually drop object files that are not explicitly referenced, // but that would be bad because it would cause this extension to not be // registered at static initialization, and therefore using it would crash. template class ExtensionIdentifier { public: typedef TypeTraitsType TypeTraits; typedef ExtendeeType Extendee; ExtensionIdentifier(int number, typename TypeTraits::ConstType default_value, LazyEagerVerifyFnType verify_func = nullptr) : number_(number), default_value_(default_value) { Register(number, verify_func); } inline int number() const { return number_; } typename TypeTraits::ConstType default_value() const { return default_value_; } static void Register(int number, LazyEagerVerifyFnType verify_func) { TypeTraits::template Register(number, field_type, is_packed, verify_func); } typename TypeTraits::ConstType const& default_value_ref() const { return default_value_; } private: const int number_; typename TypeTraits::ConstType default_value_; }; // ------------------------------------------------------------------- // Generated accessors // Used to retrieve a lazy extension, may return nullptr in some environments. extern PROTOBUF_ATTRIBUTE_WEAK ExtensionSet::LazyMessageExtension* MaybeCreateLazyExtension(Arena* arena); } // namespace internal // Call this function to ensure that this extensions's reflection is linked into // the binary: // // google::protobuf::LinkExtensionReflection(Foo::my_extension); // // This will ensure that the following lookup will succeed: // // DescriptorPool::generated_pool()->FindExtensionByName("Foo.my_extension"); // // This is often relevant for parsing extensions in text mode. // // As a side-effect, it will also guarantee that anything else from the same // .proto file will also be available for lookup in the generated pool. // // This function does not actually register the extension, so it does not need // to be called before the lookup. However it does need to occur in a function // that cannot be stripped from the binary (ie. it must be reachable from main). // // Best practice is to call this function as close as possible to where the // reflection is actually needed. This function is very cheap to call, so you // should not need to worry about its runtime overhead except in tight loops (on // x86-64 it compiles into two "mov" instructions). template void LinkExtensionReflection( const google::protobuf::internal::ExtensionIdentifier< ExtendeeType, TypeTraitsType, field_type, is_packed>& extension) { internal::StrongReference(extension); } } // namespace protobuf } // namespace google #include #endif // GOOGLE_PROTOBUF_EXTENSION_SET_H__